SCALE-UP: An implementation of Second-Principles DFT

Pablo García-Fernández, Jorge Íñiguez and Javier Junquera

Louvain May 2019
Collaborators

Cantabria University

Javier Junquera

Luxembourg Institute of Science and Technology

Jorge Iñiguez

Funding

RyC programme
What can we do with first-principles simulations?

Predict material properties using just fundamental constants

Little input from user necessary to obtain reliable information
What can we do with first-principles simulations?

Predict material properties using just fundamental constants

Little input from user necessary to obtain reliable information

Solving the stationary Schrödinger equation (clamped nuclei):

\[\hat{H}\psi = E\psi \] or DFT
What can we do with first-principles simulations?

Predict material properties using just fundamental constants

Little input from user necessary to obtain reliable information

Solving the stationary Schrödinger equation (clamped nuclei):

\[\hat{H} \psi = E \psi \] or DFT

- Predictive
- Accurate energies
- Equilibrium geometries
What can we do with first-principles simulations?

Predict material properties using just fundamental constants

Little input from user necessary to obtain reliable information

Solving the stationary Schrödinger equation (clamped nuclei):

$$\hat{H}\Psi = E\Psi$$ or DFT

- Predictive
- Accurate energies
- Equilibrium geometries
- Excited states
- Temperature
- Defects
What can we do with first-principles simulations?

Predict material properties using just fundamental constants

Little input from user necessary to obtain reliable information

Solving the stationary Schrödinger equation (clamped nuclei):

\[\hat{H}\psi = E\psi \text{ or DFT} \]

- Predictive
- Accurate energies
- Equilibrium geometries
- Excited states
- Temperature
- Defects
- **Scaling (typically N^3)**

Wealth of information that could be difficult to obtain experimentally
What can we do with first-principles simulations?

Predict material properties using just fundamental constants

Little input from user necessary to obtain reliable information

Solving the stationary Schrödinger equation (clamped nuclei):

\[\hat{H}\Psi = E\Psi \]

- Predictive
- Accurate energies
- Equilibrium geometries
- Excited states
- Temperature
- Defects
- Scaling (typically N^3)

Wealth of information that could be difficult to obtain experimentally

Pablo García-Fernández

[Email]: garciapa@unican.es

SCALE-UP
The problem

Scale of interest

✔ Nanoscale ($\approx 10 - 100 \text{nm}$)

✗ DFT $\approx 1 \text{ nm}$
The problem

Scale of interest
 ✓ Nanoscale ($\approx 10 - 100 \text{nm}$)
 ✗ DFT $\approx 1 \text{ nm}$

Non-equilibrium states
 ✓ Resistivity
 ✓ Charge diffusion
 ✓ Reaction yield

Nanoscale ($\approx 10 - 100 \text{nm}$)
The problem

Scale of interest

✓ Nanoscale ($\approx 10 - 100\text{ nm}$)
✗ DFT ≈ 1 nm

Non-equilibrium states

✓ Resistivity
✓ Charge diffusion
✓ Reaction yield

Disorder

✓ Domains
✓ Thermal
✓ Defects (polarons, impurities...)

Thermoelectrics, polarons...

Nanowires

Ferroelectric domains in BiFeO$_3$
The problem

Scale of interest

- Nanoscale ($\approx 10 - 100\, \text{nm}$)
- DFT $\approx 1\, \text{nm}$

Disorder

- Domains
- Thermal
- Defects (polarons, impurities...)

Non-equilibrium states

- Resistivity
- Charge diffusion
- Reaction yield

Perturbations/disorder are key elements in experiments.
Room temperature is fundamental for applications.
Are larger/faster FP simulations possible?

First principles simulations deal with all electrons in the system:

Number of electrons grows fast
Hamiltonian $\sim N^2$
Diagonalization $\sim N^3$
Are larger/faster FP simulations possible?

First principles simulations deal with all electrons in the system:

- Number of electrons grows fast
- Hamiltonian $\sim N^2$
- Diagonalization $\sim N^3$

Response to perturbations usually involves a few active electron/holes

Can we select the level of fidelity of our calculations?
Can we make it efficient?
Can we reliably parameterize it?

Second-principles Density Functional Methods

Pablo García-Fernández garciapa@unican.es

SCALE-UP
Are larger/faster FP simulations possible?

First principles simulations deal with all electrons in the system:

- Number of electrons grows fast
- Hamiltonian $\sim N^2$
- Diagonalization $\sim N^3$

Response to perturbations usually involves a few active electron/holes

Can we select the level of fidelity of our calculations?
Can we make it efficient?
Can we reliably parameterize it?
Are larger/faster FP simulations possible?

First principles simulations deal with all electrons in the system:

- Number of electrons grows fast
- Hamiltonian $\sim N^2$
- Diagonalization $\sim N^3$

Response to perturbations usually involves a few active electron/holes

Can we select the level of fidelity of our calculations?
Can we make it efficient?
Can we reliably parameterize it?

Second-principles Density Functional Methods

Pablo García-Fernández

garciapa@unican.es
Basic concepts

We want to separate the active electrons that participate in physical properties from all others.
We want to separate the active electrons that participate in physical properties from all others.

Suppose an insulator doped with electrons or holes:
Basic concepts

We want to separate the active electrons that participate in physical properties from all others.

Suppose an insulator doped with electrons or holes:

$$n(\vec{r}) = n_0(\vec{r}) + \delta n(\vec{r})$$

The total density is separated in reference and deformation densities:

$$n_0 = \text{reference density}$$

$$\delta n = \text{deformation density}$$
Approximating the DFT energy

Our starting point is the DFT energy

\[
E_{\text{DFT}} = \sum_{jk} o_{jk} \langle \psi_{jk} | \hat{t} + v_{\text{ext}} | \psi_{jk} \rangle + \frac{1}{2} \int \int \frac{n(\vec{r}) n'(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 r d^3 r' + E_{\text{xc}}[n] + E_{\text{nn}}
\]

We want to write the energy in terms of the reference and deformation densities.

\[
n(\vec{r}) = n_0(\vec{r}) + \delta n(\vec{r})
\]
Approximating the DFT energy

Our starting point is the DFT energy

\[E_{\text{DFT}} = \sum_{jk} o_{jk} \langle \psi_{jk} | \hat{t} + v_{\text{ext}} | \psi_{jk} \rangle + \frac{1}{2} \int \int \frac{n(\vec{r})n'(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3r d^3r' + E_{\text{xc}}[n] + E_{\text{nn}} \]

We want to write the energy in terms of the reference and deformation densities.

\[n(\vec{r}) = n_0(\vec{r}) + \delta n(\vec{r}) \]

The only difficulty is the exchange-correlation energy that we expand in terms of \(\delta n \) (see e.g. M. Elstner et al., *Phys. Rev. B*, 58, 7260 (1998)):

\[E_{\text{xc}}[n] = E_{\text{xc}}[n_0] + \int \frac{\delta E_{\text{xc}}}{\delta n(\vec{r})} \left|_{n_0} \right. \delta n(\vec{r}) d^3r + \frac{1}{2} \int \int \frac{\delta^2 E_{\text{xc}}}{\delta n(\vec{r}) \delta n(\vec{r}')} \left|_{n_0} \right. \delta n(\vec{r}) \delta n(\vec{r}') d^3r d^3r' + \cdots \]
Approximating the DFT energy

Our starting point is the DFT energy

$$E_{\text{DFT}} = \sum_{j\bar{k}} o_{j\bar{k}} \langle \psi_{j\bar{k}} | \hat{t} + v_{\text{ext}} | \psi_{j\bar{k}} \rangle + \frac{1}{2} \int \int \frac{n(\vec{r}) n'(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3r d^3r' + E_{\text{xc}}[n] + E_{\text{nn}}$$

We want to write the energy in terms of the reference and deformation densities.

$$n(\vec{r}) = n_0(\vec{r}) + \delta n(\vec{r})$$

The only difficulty is the exchange-correlation energy that we expand in terms of δn (see e. g. M. Elstner et al., *Phys. Rev. B*, 58, 7260 (1998)):

$$E_{\text{xc}}[n] = E_{\text{xc}}[n_0] + \int \frac{\delta E_{\text{xc}}}{\delta n(\vec{r})} \bigg|_{n_0} \delta n(\vec{r}) d^3r + \frac{1}{2} \int \int \frac{\delta^2 E_{\text{xc}}}{\delta n(\vec{r}) \delta n(\vec{r}')} \bigg|_{n_0} \delta n(\vec{r}) \delta n(\vec{r}') d^3r d^3r' + \cdots$$

As in usual TB-DFT approximations, we cut at second-order

$$E_{\text{DFT}} \approx E = E^{(0)} + E^{(1)} + E^{(2)}$$

However, we group the terms in a different way to TB-DFT.
Second-principles DFT approach

Material simulations allow for various approaches

First principles methods are atomistic with flexible detailed bonding

FP or TB-DFT

Based on atoms
Second-principles DFT approach

Material simulations allow for various approaches

First principles methods are atomistic with flexible detailed bonding

FP or TB-DFT

Based on atoms

\[E_{\text{DFT}} \approx E^{(0)} + E^{(1)} + E^{(2)} + \ldots \]

Atoms \(\Rightarrow\) FP \(\Rightarrow\) Materials

Atoms + flexible detailed bonding = Materials

E_{\text{DFT}} \approx E^{(0)} + E^{(1)} + E^{(2)} + \ldots

Second-principles DFT approach

Material simulations allow for various approaches

First principles methods are atomistic with flexible detailed bonding

Based on atoms

\[E_{\text{DFT}} \approx E^{(0)}_{\text{atomic cores}} + E^{(1)}_{\text{full 1e energy}} + E^{(2)}_{\text{full 2e energy}} + \ldots \]

Based on materials

\[E_{\text{DFT}} \approx E^{(0)}_{\text{lattice}} + E^{(1)} + E^{(2)} + \ldots \]

Atoms \(\rightarrow\) FP \(\rightarrow\) Materials \(\rightarrow\) SP \(\rightarrow\) Large-scale

Accurate properties do not require bond-breaking!

Atoms \(\rightarrow\) FP \(\rightarrow\) Materials \(\rightarrow\) SP \(\rightarrow\) Large-scale
Second-principles DFT approach

Material simulations allow for various approaches

First principles methods are **atomistic** with **flexible detailed bonding**

FP or TB-DFT

Based on atoms

\[E_{\text{DFT}} \approx E^{(0)} + E^{(1)} + E^{(2)} + \ldots \]

Based on materials

\[E_{\text{DFT}} \approx E^{(0)} + E^{(1)} + E^{(2)} + \ldots \]

Atoms \implies \text{FP} \implies \text{Materials} \implies \text{SP} \implies \text{Large-scale}

Accurate properties do not require bond-breaking!

Precise, small, material-adapted basis \implies \text{Wannier-like functions}

Energy terms: $E = E^{(0)} + E^{(1)} + E^{(2)}$

Reference

This term is the full DFT energy for the reference state:

$$E^{(0)} = \sum_{j\bar{k}} o_{j\bar{k}}^0 \langle \psi_{j\bar{k}}^0 | \hat{t} + v_{\text{ext}} | \psi_{j\bar{k}}^0 \rangle + \frac{1}{2} \int \int \frac{n_0(\bar{r})n_0^\prime(\bar{r}^\prime)}{|\bar{r} - \bar{r}^\prime|} d^3rd^3r^\prime + E_{\text{xc}}[n_0] + E_{nn}$$
Energy terms: \(E = E^{(0)} + E^{(1)} + E^{(2)} \)

This term is the full DFT energy for the reference state:

\[
E^{(0)} = \sum_{j\bar{k}} c_{jk}^0 \langle \psi_{j\bar{k}}^0 \rangle \hat{t} + v_{\text{ext}} \psi_{j\bar{k}}^0 \rangle + \frac{1}{2} \int \int \frac{n_0(\vec{r})n_0'(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3r d^3r' + E_{\text{xc}}[n_0] + E_{nn}
\]

No approximations

At difference with usual TB-DFT this term is very large and contains most of the total energy. It can be made really accurate.

\(E_0(\eta, \{\vec{u}\}) \) is the energy surface for the reference state

It can be represented by a high-quality model potential.

J. Wojdeł et al., *JPCM*, 25, 305401 (2013)
Energy terms: \(E = E^{(0)} + E^{(1)} + E^{(2)} \) One electron

- **Reference**
- Full DFT energy for \(n_0 \)
- Force field
- **Multibinit**

\(E^{(1)} \) contains differences in one-electron energies

\[
E^{(1)} = \sum_{jk} \left[o_{jk} \langle \psi_{j\bar{k}} | \hat{h}_0 | \psi_{j\bar{k}} \rangle - o_{j\bar{k}}^{0} \langle \psi_{j\bar{k}}^{0} | \hat{h}_0 | \psi_{j\bar{k}}^{0} \rangle \right]
\]

where \(\hat{h}_0 \) is the Kohn-Sham Hamiltonian for the reference density:

\[
\hat{h}_0 = \hat{t} + \nu_{\text{ext}} + \nu_{\text{H}}(n_0) + \nu_{\text{xc}}[n_0]
\]

Pablo García-Fernández
garciapa@unican.es
SCALE-UP
Energy terms: \(E = E^{(0)} + E^{(1)} + E^{(2)} \) One electron

- **Full DFT energy for \(n_0 \)**
- **Force field**
- **Multibinit**

\(E^{(1)} \) contains differences in one-electron energies

\[
E^{(1)} = \sum_{j,k} \left(o_{j,k} \langle \psi_j | \hat{h}_0 | \psi_{j,k} \rangle - o_{j,k}^0 \langle \psi_j^0 | \hat{h}_0 | \psi_{j,k}^0 \rangle \right)
\]

\[
= \sum_{a,b} D_{ab} \gamma_{ab} \quad \text{(Wannier basis, } \chi_a \text{)}
\]

\[
\delta n(\vec{r}) = \sum_{a,b} D_{ab} \chi_a^*(\vec{r}) \chi_b(\vec{r})
\]

\(\gamma_{ab} \) takes the role of the hopping constant in TB schemes.

\[
\gamma_{ab} = \int d^3r \chi_a^*(\vec{r}) \hat{h}_0 \chi_b(\vec{r})
\]
Energy terms: \(E = E^{(0)} + E^{(1)} + E^{(2)} \) One electron

- **Full DFT energy for** \(n_0 \)
- **Force field**
- **Multibinit**

\(E^{(1)} \) contains differences in one-electron energies

\[
E^{(1)} = \sum_{j\bar{k}} \left[o_{j\bar{k}} \langle \psi_{j\bar{k}}\rvert \hat{h}_0 \lvert \psi_{j\bar{k}} \rangle - o_{j\bar{k}}^0 \langle \psi_{j\bar{k}}^0\rvert \hat{h}_0 \lvert \psi_{j\bar{k}}^0 \rangle \right]
\]

\[
= \sum_{ab} D_{ab} \gamma_{ab} \quad \text{(Wannier basis, } \chi_a \text{)}
\]

\[
\delta n(\vec{r}) = \sum_{ab} D_{ab} \chi_a^*(\vec{r}) \chi_b(\vec{r})
\]

\(\gamma_{ab} \) takes the role of the hopping constant in TB schemes.

\[
\gamma_{ab} = \int d^3r \chi_a^*(\vec{r}) \hat{h}_0 \chi_b(\vec{r})
\]

Only depends on difference density!
Energy terms: $E = E^{(0)} + E^{(1)} + E^{(2)}$

Two electron

- Full DFT energy for n_0
- Force field
- Multibinit

One-electron

- Depends only on difference density
- Tight-binding like

$E^{(2)}$ are interactions between 2 electrons ($E^{(3)}$ 3-electron, etc.):

$$E^{(2)} = \frac{1}{2} \int d^3r \int d^3r' g(\vec{r}, \vec{r}', s, s') \delta n(\vec{r}, s) \delta n(\vec{r}', s')$$

where g is a screened electron-electron interaction operator.
Energy terms: \(E = E^{(0)} + E^{(1)} + E^{(2)} \) Two electron

Reference
- Full DFT energy for \(n_0 \)
- Force field
- Multibinit

One-electron
- Depends only on difference density
- Tight-binding like

\(E^{(2)} \) are interactions between 2 electrons (\(E^{(3)} \) 3-electron, etc.):

\[
E^{(2)} = \frac{1}{2} \int d^3r \int d^3r' g(\vec{r}, \vec{r}', s, s') \delta n(\vec{r}, s) \delta n(\vec{r}', s')
\]

\[
\begin{align*}
\left\{ \left[D_{ab}^{\uparrow} + D_{ab}^{\downarrow} \right] \left[D_{a'b'}^{\uparrow} + D_{a'b'}^{\downarrow} \right] U_{aba'b'} \\
+ \left[D_{ab}^{\uparrow} - D_{ab}^{\downarrow} \right] \left[D_{a'b'}^{\uparrow} - D_{a'b'}^{\downarrow} \right] I_{aba'b'} \right\}
\end{align*}
\]

where \(g \) is a screened electron-electron interaction operator.

\(E^{(2)} \) only depends the difference density.
Energy terms: \(E = E^{(0)} + E^{(1)} + E^{(2)} \) Two electron

- **Reference**
 - Full DFT energy for \(n_0 \)
 - Force field
 - Multibinit

- **One-electron**
 - Depends only on difference density
 - Tight-binding like

\(E^{(2)} \) are interactions between 2 electrons (\(E^{(3)} \) 3-electron, etc.):

\[
E^{(2)} = \frac{1}{2} \int d^3r \int d^3r' g(\vec{r}, \vec{r}', s, s') \delta n(\vec{r}, s) \delta n(\vec{r}', s')
\]

\[
\left\{ \left[D_{ab}^{\uparrow} + D_{ab}^{\downarrow} \right] \left[D_{a'b'}^{\uparrow} + D_{a'b'}^{\downarrow} \right] U_{aba'b'} \right. \\
+ \left[D_{ab}^{\uparrow} - D_{ab}^{\downarrow} \right] \left[D_{a'b'}^{\uparrow} - D_{a'b'}^{\downarrow} \right] I_{aba'b'} \right\}
\]

where \(g \) is a screened electron-electron interaction operator.

\(E^{(2)} \) only depends the difference density
Energy terms: \(E = E^{(0)} + E^{(1)} + E^{(2)} \) Calculation

Reference
- Full DFT energy for \(n_0 \)
- Force field
- Multibinit

One-electron
- Depends only on difference density
- Tight-binding like

Two-electron
- Depends only on difference density
- Screened mean-field interactions
 - Accurate
 - Fast
 - Valid for all kind of systems (magnetic, metallic, ...)
Electrostatics/Electron-lattice interactions
All interactions occur between localized objects:

At long-range (far-field regime) shape of source density is unimportant

Multipolar expansion

γ and U contain electrostatic (long-range) contributions

Hartree/electron-nucleus
Electrostatics/Electron-lattice interactions

All interactions occur between localized objects:

At long-range (far-field regime) shape of source density is unimportant

Multipolar expansion

γ and U contain electrostatic (long-range) contributions

Hartree/electron-nucleus

Local dipoles:

- Atomic displacement $\rightarrow Z^*$
- Hybridizations $\rightarrow \langle \chi_a | \vec{r} | \chi_b \rangle$

Potential approximated by field of point charges and dipoles localized at the reference geometry
Electrostatics/Electron-lattice interactions

All interactions occur between localized objects:

At long-range (far-field regime) shape of source density is unimportant

Multipolar expansion

\(\gamma \) and \(U \) contain electrostatic (long-range) contributions

Hartree/electron-nucleus

Local dipoles:

- Atomic displacement \(\to Z^* \)
- Hybridizations \(\to \langle \chi_a | \vec{r} | \chi_b \rangle \)

Potential approximated by field of point charges and dipoles localized at the reference geometry

Model parameters \(\to \) long and short range contributions.

Pablo García-Fernández
garciapa@unican.es
Geometry dependence - Forces

Geometry is involved by expanding γ on the atomic positions:

$$\gamma_{ab}^{sr} = \gamma_{ab}^{0} + \sum_{\lambda\nu} \left[\vec{f}_{ab,\lambda\nu} \cdot \delta\vec{r}_{\lambda\nu} + \delta\vec{r}_{\lambda\nu} \cdot \vec{g}_{ab,\lambda\nu} \cdot \delta\vec{r}_{\lambda\nu} + \ldots \right]$$

U, I should also depend on $\delta\vec{r} \rightarrow$ neglected
Geometry dependence - Forces

Geometry is involved by expanding γ on the atomic positions:

$$\gamma_{ab}^{sr} = \gamma_{ab}^0 + \sum_{\lambda \nu} \left[\hat{f}_{ab,\lambda \nu} \cdot \delta \vec{r}_{\lambda \nu} + \delta \vec{r}_{\lambda \nu} \cdot \hat{g}_{ab,\lambda \nu} \cdot \delta \vec{r}_{\lambda \nu} + \ldots \right]$$

U, I should also depend on $\delta \vec{r} \rightarrow$ neglected

The forces are then obtained:

$$\vec{F}_{\lambda} = -\vec{\nabla}_{\lambda} E = -\vec{\nabla}_{\lambda} E^{(0)} - \sum_{ab} D_{ab} \vec{\nabla}_{\lambda} \gamma_{ab}.$$

Electronic contribution corrects the force field
Applications of SPDFT

NiO - Insulator with highly correlated electrons:

Magnetic Properties

<table>
<thead>
<tr>
<th>Method</th>
<th>J_1 (meV)</th>
<th>J_2 (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutron</td>
<td>1.4 -19.0</td>
<td></td>
</tr>
<tr>
<td>LDA+U</td>
<td>2.6 -17.5</td>
<td></td>
</tr>
</tbody>
</table>

SPDFT captures doping and lattice screening!

Electronic/magnetic properties predicted at DFT level

2000 atoms single point 1 hour in 1 Desktop cpu (full diag)

2DEG at SrTiO$_3$/LaAlO$_3$ Interface

FP \rightarrow M. Stengel, PRL, 106, 136803 (2011)

Pablo García-Fernández garciapa@unican.es

SCALE-UP
Applications of SPDFT

NiO - Insulator with highly correlated electrons:

Electronic/magnetic properties predicted at DFT level
2000 atoms single point 1 hour in 1 Desktop cpu (full diag)

<table>
<thead>
<tr>
<th>Method</th>
<th>J_1 (meV)</th>
<th>J_2 (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutron</td>
<td>1.4</td>
<td>-19.0</td>
</tr>
<tr>
<td>LDA+U</td>
<td>2.6</td>
<td>-17.5</td>
</tr>
<tr>
<td>SP-Ni(3d) + O(2p)</td>
<td>3.3</td>
<td>-17.6</td>
</tr>
</tbody>
</table>

Magnetic Properties
Applications of SPDFT

NiO - Insulator with highly correlated electrons:

Electronic/magnetic properties **predicted at DFT level**
2000 atoms single point 1 hour in 1 Desktop cpu (full diag)

2DEG at SrTiO$_3$/LaAlO$_3$ Interface

Magnetic Properties

<table>
<thead>
<tr>
<th>Method</th>
<th>J_1 (meV)</th>
<th>J_2 (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutron</td>
<td>1.4</td>
<td>-19.0</td>
</tr>
<tr>
<td>LDA+U</td>
<td>2.6</td>
<td>-17.5</td>
</tr>
<tr>
<td>SP-Ni(3d) + O(2p)</td>
<td>3.3</td>
<td>-17.6</td>
</tr>
</tbody>
</table>

Applications of SPDFT

NiO - Insulator with highly correlated electrons:

<table>
<thead>
<tr>
<th>Method</th>
<th>J_1 (meV)</th>
<th>J_2 (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutron</td>
<td>1.4</td>
<td>-19.0</td>
</tr>
<tr>
<td>LDA+U</td>
<td>2.6</td>
<td>-17.5</td>
</tr>
<tr>
<td>SP-Ni(3d) + O(2p)</td>
<td>3.3</td>
<td>-17.6</td>
</tr>
</tbody>
</table>

Electronic/magnetic properties predicted at DFT level
2000 atoms single point 1 hour in 1 Desktop cpu (full diag)

2DEG at SrTiO$_3$/LaAlO$_3$ Interface

SPDFT captures doping and lattice screening!

Pablo García-Fernández
garciapa@unican.es
SCALE-UP
Ferroelectric bubbles

SP can simulate ferroelectric bubble skyrmions in PbTiO$_3$/SrTiO$_3$

- ~ 40000 atoms
- Tangential polarization to bubble
 Makes bubbles chiral
- Explains XCD signal
- Bubble shows non-trivial topology
 Planes \rightarrow same topological charge

S. Das et al., *Nature*, 568, 368 (2019)
The implementation of SP-DFT: SCALE-UP

P. Garcia-Fernandez, J. Wojdeł, J. Iñiguez and J. Junquera

- Fully integrated electron+lattice models
- Single-points, Dynamics (isokinetic, Langevin), Montecarlo
- SCF with convergence accelerators
- TDDFT: Real-time density propagation, $\tilde{E}(t)$ fields
The implementation of SP-DFT: SCALE-UP

P. García-Fernández, J. Wojdeł, J. Iñiguez and J. Junquera

- Fully integrated electron+lattice models
- Single-points, Dynamics (isokinetic, Langevin), Montecarlo
- SCF with convergence accelerators
- TDDFT: Real-time density propagation, $\vec{E}(t)$ fields
- Fortran 90 code + python utilities and interface
- Parallelization: Hybrid scheme, MPI+OPENMP
- SCALE-UP python module: Running and analysis
- Model building suite: MODELMAKER

Pablo García-Fernández
garciapa@unican.es
The implementation of SP-DFT: SCALE-UP

P. Garcia-Fernandez, J. Wojdeł, J. Iñiguez and J. Junquera

- Fully integrated electron+lattice models
- Single-points, Dynamics (isokinetic, Langevin), Montecarlo
- SCF with convergence accelerators
- TDDFT: Real-time density propagation, $\vec{E}(t)$ fields
- Fortran 90 code + python utilities and interface
- Parallelization: Hybrid scheme, MPI+OPENMP
- SCALE-UP python module: Running and analysis
- Model building suite: MODELMAKER
- Future: Spin-orbit, defects (surfaces, interfaces, impurities...)
- Future: Pure density-matrix implementation
The connection between SCALE-UP and MULTIBINIT

SCALE-UP can be run as a library by other codes

- It can provide $E^{(0)}$, $E^{(1)}+E^{(2)}$ or $E^{(0)}+E^{(1)}+E^{(2)}$

Pablo García-Fernández

garciapa@unican.es
The connection between SCALE-UP and MULTIBININIT

SCALE-UP can be run as a library by other codes

- It can provide $E^{(0)}$, $E^{(1)}+E^{(2)}$ or $E^{(0)}+E^{(1)}+E^{(2)}$
- It has three main calls
 1. `scaleup_init`
 2. `calculate_energy`
 3. `calculate_forces`
The connection between SCALE-UP and MULTIBINIT

SCALE-UP can be run as a library by other codes

- It can provide $E^{(0)}$, $E^{(1)}+E^{(2)}$ or $E^{(0)}+E^{(1)}+E^{(2)}$
- It has three main calls
 1. scaleup_init
 2. calculate_energy
 3. calculate_forces

Distribution SCALE-UP \rightarrow Attendance to workshop
Rationale: Forming community, second-principles are not blackbox
Model construction

Second Principles depend on **First Principles** to create models

FP → Material Models → SP

FP-SP Interface

Very delicate process, we need:

- **Accuracy**: SP model needs to reproduce FP
- **Lightweight**: SP model needs to be efficient

Currently we have a Scale-Up - Siesta - Wannier90 Interface

Pablo García-Fernández
garciapa@unican.es
SCALE-UP
Model construction

Second Principles depend on First Principles to create models

FP-SP Interface

Very delicate process, we need:

- **Accuracy**: SP model needs to reproduce FP
- **Lightweight**: SP model needs to be efficient
- **Robust**: Necessary characteristics of model construction tool
 - Automated
Model construction

Second Principles depend on First Principles to create models

Very delicate process, we need:

- **Accuracy**: SP model needs to reproduce FP
- **Lightweight**: SP model needs to be efficient
- **Robust**: Necessary characteristics of model construction tool
 1. Automated
 2. Few and clean input parameters
 3. Systematically improvable models

FP-SP Interface

Pablo García-Fernández
garciapa@unican.es
SCALE-UP
Model construction

Second Principles depend on First Principles to create models

FP-SP Interface

Very delicate process, we need:

- Accuracy: SP model needs to reproduce FP
- Lightweight: SP model needs to be efficient
- Robust: Necessary characteristics of model construction tool
 1. Automated
 2. Few and clean input parameters
 3. Systematically improvable models
 4. Produces hopping, electron-lattice, electron-electron-parameters

Currently we have a SCALE-UP - SIESTA - WANNIER90 Interface
The first step to create a model is to create a FP training set.

Model Hamiltonian \rightarrow capture FP physics

- **Bands:** Wannier Hamiltonian
- **Electron-lattice terms:** Change geometry on a supercell
- **Electron-electron terms:** Controlled perturbation of electrons

$$h_{ab}^s = \gamma_{ab}^{\text{RAG, sr}} + \delta\gamma_{ab}^{\text{el-lat, sr}} (\{\tilde{\mu}_\lambda\}) + \sum_{a'b'} (D_{a'b'}^U U_{aba'b'} \pm D_{a'b'}^l l_{aba'b'}) + \gamma_{ab}^{\text{lr}}$$
The first step to create a model is to create a FP training set.

Model Hamiltonian \[\rightarrow \text{capture FP physics} \]

- **Bands**: Wannier Hamiltonian
- **Electron-lattice terms**: Change geometry on a supercell
- **Electron-electron terms**: Controlled perturbation of electrons

\[
h_{ab}^s = \gamma_{ab}^{\text{RAG,sr}} + \delta \gamma_{ab}^{\text{el-lat,sr}} (\{\vec{u}_\lambda\}) + \sum_{a'b'} \left(D_{a'b'}^U U_{aba'b'} \pm D_{a'b'}^l l_{aba'b'} \right) + \gamma_{ab}^{\text{lr}}
\]
The Siesta-Wannier90 interface...

Javier Junquera

Pablo García-Fernández garciapa@unican.es SCALE-UP
Next we need to **determine the terms** that form the model.

- The input is just 4 distances that determine the range of hopping, position, electron-lattice and electron-electron matrix elements.
- The code then filters the created terms using **symmetry**.
- Finally, modelmaker calls **SCALE-UP** to determine the long-range corrections.
The code determines iteratively "best n-terms" models
It provides with tools to check accuracy of the model and systematic error detection
The user decides if model is good enough and how to improve
Summary

- Second-Principles DFT bridges the gap between first-principles and model Hamiltonians
- The goal is getting closer to "Computational experiments"

 P. Garcia-Fernandez et al., *PRB*, 93, 195137 (2016)
 J. Wojdeł et al., *JPCM*, 25, 305401 (2013)

- Current applications show the accuracy and versatility of method
 S. Das et al., *Nature*, 568, 368 (2019)

- Their use requires still a lot of user input
 Strong interactions with FP codes

Thank you for your attention!