Miquel Royo and Massimiliano Stengel
Institut de Ciència de Materials de Barcelona

SPATIAL DISPERSION PROPERTIES FROM DFPT: DYNAMICAL QUADRUPOLES AND FLEXOELECTRIC TENSOR

9th ABINIT Developers Workshop
Louvain-la-Neuve, May 2019
CONTENTS

I LONG-WAVE DFPT APPROACH TO SPATIAL DISPERSION
 Flexoelectric Tensor
 Dynamical Quadrupole Tensor

II NUMERICAL RESULTS
 Method validation
 Convergence study

III IMPLEMENTATION DETAILS

IV CONCLUSIONS AND OUTLOOK
SPATIAL DISPERSION PROPERTIES

Flexoelectricity

\[P_\alpha = \mu_{\alpha\beta,\gamma\delta} \frac{\partial \varepsilon_{\beta\delta}}{\partial r_\gamma} \]

Polarization response to a strain gradient

3 Contributions to \(\mu_{\alpha\beta,\gamma\delta} \):

- Electronic (clamped-ion)
- Lattice
- Mixed

Clamped-Ion Flexoelectric tensor

Spatial dispersion of CI piezoelectric tensor

\[
\begin{align*}
 e_{\alpha\beta\delta} &\propto \frac{d^2 E}{d\varepsilon_\alpha \, d\eta_{\beta\delta}} \bigg|_{q=0} = E^{\varepsilon_{\alpha\eta_{\beta\delta}}}
 \\
 \mu_{\alpha\beta,\gamma\delta} &\propto \frac{d^3 E}{d\varepsilon_\alpha \, d\eta_{\beta\delta} \, dq_\gamma} \bigg|_{q=0} = E^{\varepsilon_{\alpha\eta_{\beta\delta}}}
\end{align*}
\]

Electric field and strain perturbations formulated at \(q=0 \)

\[\varepsilon_\alpha^q \leftarrow \frac{dA_\alpha^q}{dt} \]
Vector potential

\[\eta_{\beta\delta}^q \leftarrow \frac{d(\beta)^q}{dq_\delta} \]
Metric wave

Miquel Royo Valls
SPATIAL DISPERSION PROPERTIES

Long-wave DFPT formulation of CI FxE tensor

\[
\mu_{\alpha\beta,\gamma\delta} = \frac{1}{\Omega} E^{\mathcal{E}^*}_{\alpha}(\beta)
\]

\[
\hat{H}^{(\beta)}_{k,\delta} = i\hat{H}^{\eta\beta\delta}_{k}
\]

\[
|u^{(\beta)}_{m,k,\delta}\rangle = i|u^{\eta\beta\delta}_{m,k}\rangle
\]

NEW OBJECTS

\[
\tilde{E}^{\mathcal{E}^*}_{\gamma\delta}(\beta) = \int_{BZ} [d^3k] \sum_m \tilde{E}^{\mathcal{E}^*}_{\alpha}(\beta) + \frac{i}{2} \int_{\Omega} \int K_{\gamma}(r, r') n^{\mathcal{E}^*}(r) n^{\eta\beta\delta}(r') d^3r d^3r'
\]

\[
\tilde{E}^{\mathcal{E}^*}_{m,k,\gamma\delta} = i\langle u^{\mathcal{E}^*}_{m,k} | \partial_{\gamma} \hat{H}^{(0)}_{k} | u^{\eta\beta\delta}_{m,k}\rangle + i\langle u^{\mathcal{E}^*}_{m,k} | \partial_{\gamma} \hat{Q}_{k} \hat{H}^{\eta\beta\delta}_{k} | u^{(0)}_{m,k}\rangle + i\langle u^{(0)}_{m,k} | \hat{V}^{\mathcal{E}^*} \partial_{\gamma} \hat{Q}_{k} | u^{\eta\beta\delta}_{m,k}\rangle
\]

\[
+ \frac{1}{2} \langle u^{\mathcal{E}^*}_{m,k} | \hat{H}^{(\beta)}_{k,\gamma\delta} | u^{(0)}_{m,k}\rangle + i\langle i | u^{A_{\alpha}}_{m,k,\gamma} | u^{\eta\beta\delta}_{m,k}\rangle
\]

M. Royo and M. Stengel, PRX (accepted)
Dynamical quadrupoles

Second moment of the charge response to an atomic displacement

\[
Q^q_{\kappa\beta} = \int_\Omega \rho^\tau_{\kappa\beta}(\mathbf{r}) d^3r = -i q_\beta Z_\kappa + 2 E_{\mathbf{q}}^{\phi^* \tau_{\kappa\beta}} \frac{d^2 E}{d\varphi_{-\mathbf{q}} d\tau_{\kappa\beta,\mathbf{q}}}
\]

\[
Q^q_{\kappa\beta} = -i q_\gamma Q^{(1,\gamma)}_{\kappa\beta} - \frac{q_\gamma q_\delta}{2} Q^{(2,\gamma\delta)}_{\kappa\beta} + \cdots
\]

Born effective charge

\[
\delta_\beta\gamma Z_\kappa + 2 E_\gamma^{\phi^* \tau_{\kappa\beta}}
\]

Quadrupole

\[
2 E_\gamma^{\phi^* \tau_{\kappa\beta}}
\]

ONLY AT NON CENTROSYMMETRIC ATOMIC POSITIONS

Miquel Royo Valls

Louvain-la-Neuve, May 2019
SPATIAL DISPERSION PROPERTIES

Long-wave DFPT formulation of dynamic quadrupoles

\[Q^{(2, \gamma \delta)}_{\kappa \beta} = -2E^{\phi^* \tau_{\kappa \beta}}_{\gamma \delta} \]

SCALAR POTENTIAL - ELECTRIC FIELD

\[|u_{m_k}^{\delta} \rangle = |i u_{m_k, \delta}^\phi \rangle \]

\[E^{\phi^* \tau_{\kappa \beta}}_{\gamma \delta} = -i E^{E^* \tau_{\kappa \beta}}_{\gamma \delta} - i E^{E^* \tau_{\kappa \beta}}_{\delta} \]

New Objects

\[E^{E^* \tau_{\kappa \beta}}_{\gamma \delta} = s \int_{BZ} [d^3 k] \sum_m E^{E^* \tau_{\kappa \beta}}_{m_k, \gamma} + \frac{1}{2} \int_{\Omega} \int_{\Omega} K_{\gamma}(r, r') n^{E \delta}(r) n^{\tau_{\kappa \beta}}(r') d^3 r d^3 r' \]

\[E^{E^* \tau_{\kappa \beta}}_{m_k, \gamma} = \langle u_{m_k}^{E \delta} | \partial_{\gamma} \hat{H}^{(0)}_{k} | u_{m_k}^{\tau_{\kappa \beta}} \rangle \]

M. Royo and M. Stengel, PRX (accepted)
Why to care about dynamic quadrupoles?

Long-range interatomic forces

$$\Phi_{q,DD}^{\kappa\alpha,\kappa'\beta} = \frac{4\pi}{\Omega} \frac{(q \cdot Z^*_\kappa)_{\alpha}(q \cdot Z^*_{\kappa'})_{\beta}}{q \cdot \epsilon \cdot q} \approx d^{-3}$$

$$\Phi_{q,DQ}^{\kappa\alpha,\kappa'\beta} = -i \frac{4\pi}{2\Omega} \frac{(q \cdot Z^*_\kappa)_{\alpha}(q \cdot q \cdot Q^*_{\kappa'})_{\beta}}{q \cdot \epsilon \cdot q} + i \frac{4\pi}{2\Omega} \frac{(q \cdot q \cdot Q^*_\kappa)_{\alpha}(q \cdot Z^*_{\kappa'})_{\beta}}{q \cdot \epsilon \cdot q} \approx d^{-4}$$

Frozen-ion piezoelectric tensor (Martin’s theory, 1972)

$$\bar{e}_{\alpha\beta\gamma} = \left. \frac{\partial P_{\alpha}}{\partial \varepsilon_{\beta\gamma}} \right|_{FI}$$

$$\bar{e}_{\alpha\beta\gamma} + \bar{e}_{\gamma\beta\alpha} = \frac{1}{\Omega} \sum_{\kappa} Q^{(2,\alpha\gamma)}_{\kappa\beta}$$
CONTENTS

I LONG-WAVE DFPT APPROACH TO SPATIAL DISPERSION
 Flexoelectric Tensor
 Dynamical Quadrupole Tensor

II NUMERICAL RESULTS
 Method validation
 Convergence study

III IMPLEMENTATION DETAILS

IV CONCLUSIONS AND OUTLOOK
LONG-WAVE DFPT: NUMERICAL RESULTS

Quadrupoles testcase: Tetragonal PbTiO$_3$

All calculations are performed using the LDA and norm conserving PSPs

Ecut=70 Ha and 8x8x8 MP k-points

<table>
<thead>
<tr>
<th>Q_{κ^3}</th>
<th>$\kappa =$Pb</th>
<th>$\kappa =$Ti</th>
<th>$\kappa =$O$_1$</th>
<th>$\kappa =$O$_2$</th>
<th>$\kappa =$O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{\kappa^3}^{(2,11)}$</td>
<td>2.264</td>
<td>-3.545</td>
<td>2.884</td>
<td>-4.186</td>
<td>0.406</td>
</tr>
<tr>
<td>$Q_{\kappa^3}^{(2,22)}$</td>
<td>2.264</td>
<td>-3.545</td>
<td>-4.186</td>
<td>2.884</td>
<td>0.406</td>
</tr>
<tr>
<td>$Q_{\kappa^1}^{(2,31)}$</td>
<td>-0.062</td>
<td>-3.799</td>
<td>3.123</td>
<td>-1.115</td>
<td>-1.784</td>
</tr>
<tr>
<td>$Q_{\kappa^2}^{(2,32)}$</td>
<td>-0.062</td>
<td>-3.799</td>
<td>-1.115</td>
<td>3.123</td>
<td>-1.784</td>
</tr>
<tr>
<td>$Q_{\kappa^3}^{(2,33)}$</td>
<td>1.240</td>
<td>-0.195</td>
<td>2.027</td>
<td>2.027</td>
<td>6.653</td>
</tr>
</tbody>
</table>

*TABLE I. Quadrupole moments in e·Bohr of PbTiO$_3$."

Recall: Martin’s 1972 formula

$$e^{P}_{\alpha\beta\gamma} = v_0^{-1} \sum_K \left[\sum_6 e^{*}_{K\alpha\delta} \Gamma_{K\delta\beta\gamma} \right] - \frac{1}{2} \left(Q_{K\alpha\beta\gamma} - Q_{K\gamma\alpha\beta} + Q_{K\beta\gamma\alpha} \right)$$

Clamped-ion Piezoelectric Tensor

<table>
<thead>
<tr>
<th>Strain</th>
<th>$e_{113} = e_{223}$</th>
<th>$e_{311} = e_{322}$</th>
<th>e_{333}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1547</td>
<td>0.3617</td>
<td>-0.8345</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II. Clamped-ion piezoelectric coefficients (in C/m2) of PbTiO$_3"
LONG-WAVE DFPT: NUMERICAL RESULTS

Flexoelectric tensor: Cubic materials

Cubic symmetry

3 independent components

Testcase 1: Isolated noble gas atoms

<table>
<thead>
<tr>
<th></th>
<th>μ_L</th>
<th>μ_T</th>
<th>$\mu_S \times 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>$-0.479 , (0.479^a)$</td>
<td>$-0.479 , (0.479^a)$</td>
<td>$-0.08 , (0.08^a)$</td>
</tr>
<tr>
<td>Ar</td>
<td>$-4.821 , (-4.813^a)$</td>
<td>$-4.823 , (-4.820^a)$</td>
<td>$-1 , (-10^a)$</td>
</tr>
<tr>
<td>Kr</td>
<td>$-6.471 , (-6.474^a)$</td>
<td>$-6.477 , (-6.476^a)$</td>
<td>$-4 , (-20^a)$</td>
</tr>
</tbody>
</table>

() values obtained via numerical derivation in q
A. Schiaffino et al. PRB 99, 085107 (2019)

Testcase 2: Real materials

A. Schiaffino et al.
PRB 99, 085107 (2019)

Stengel
PRB 90, 201112(R) (2014)

<table>
<thead>
<tr>
<th></th>
<th>μ_L</th>
<th>μ_T</th>
<th>μ_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si (this work)</td>
<td>-1.4114</td>
<td>-1.0491</td>
<td>-0.1895</td>
</tr>
<tr>
<td>Ref. 3</td>
<td>-1.4110</td>
<td>-1.0493</td>
<td>-0.1894</td>
</tr>
<tr>
<td>SrTiO$_3$ (this work)</td>
<td>-0.8848</td>
<td>-0.8262</td>
<td>-0.0823</td>
</tr>
<tr>
<td>Ref. 3</td>
<td>-0.8851</td>
<td>-0.8260</td>
<td>-0.0823</td>
</tr>
<tr>
<td>Ref. 6</td>
<td>-0.883</td>
<td>-0.825</td>
<td>-0.082</td>
</tr>
</tbody>
</table>

TABLE V. Flexoelectric coefficients (nC/m) of Si and SrTiO$_3$.

"TABLE III. Flexoelectric coefficients (pC/m) of noble-gas atom systems. aRef. [3]"
Convergence study

SYSTEM: Silicon

All calculations are performed using the LDA and norm conserving PSPs

THE SPATIAL-DISPERSION TENSORS CALCULATION REQUIRES A COMPUTATIONAL EFFORT COMPARABLE TO THE CALCULATION OF OTHER STANDARD LINEAR-RESPONSE QUANTITIES
CONTENTS

I LONG-WAVE DFPT APPROACH TO SPATIAL DISPERSION
 Flexoelectric Tensor
 Dynamical Quadrupole Tensor

II NUMERICAL RESULTS
 Method validation
 Convergence study

III IMPLEMENTATION DETAILS

IV CONCLUSIONS AND OUTLOOK
LONG-WAVE DFPT: IMPLEMENTATION DETAILS

New objects to implement

\[K_\gamma(G, G') = -8\pi G_\gamma \frac{\delta_{GG'} \alpha\beta}{G^4} \]

\[\hat{H}_{k,\gamma}^{\tau,\kappa,\beta} = V^{\text{loc},\tau,\kappa,\beta}_{\gamma} + V^{\text{sep},\tau,\kappa,\beta}_{k,\gamma} \]

\[\hat{H}_{k,\gamma}^{\beta} = \hat{T}_{k,\gamma}^{\beta} + V^{\text{loc},\gamma}_{\delta} + V^{\text{sep},\gamma}_{k,\gamma} + \hat{V}^{H_0,\gamma}_{\delta} \]

\[\left\langle i\, u^A_{\alpha m_k,\gamma} | u^\eta_{\beta m_k} \right\rangle \rightarrow -\frac{i}{2} \left\langle \tilde{\partial}_{\alpha\gamma} u_{m_k}^{(0)} | u^\eta_{\beta m_k} \right\rangle - \frac{i}{2} \left\langle u_{m_k,\alpha\gamma} | u^\eta_{\beta m_k} \right\rangle \]

Response to an orbital B-field

NOT IMPLEMENTED

- **hartredq** (54_spacepar/m_spacepar.F90)
- **dfpt_vlocaldq** (67_common/m_mklocl.F90)
- **nonlop (choice=22)** (66_nonlocal/m_nonlop.F90)
- **mkkin_metdqmdq** (56_recipspace/m_kg.F90)
- **dfpt_vlocaldqmdq** (67_common/m_mklocl.F90)
- **nonlop (choice=33)** (66_nonlocal/m_nonlop.F90)
Example of input file

Crystalline silicon: computation of the Quadrupole
and CI FxE Tensors

ndtset 5

#Set 1: Ground state self-consistency

getwfk1 0
kptopt1 1
nqpt1 0
tolvrs1 1.0d-18

#Set 2: Response function calculation of d/dk

iscf2 -3
kptopt2 2
rfelfd2 2
tolwfr2 1.0d-22
rfdir2 1 1 1

#Set 3: Response function calculation of d2/dkdk

getddk3 2
iscf3 -3
kptopt3 2
rf2_dkd3 1
tolwfr3 1.0d-22

#Set 4: Response function calculation of Q=0 phonons,
electric field and strain perturbations

getddk4 2
kptopt4 2
rfelfd4 3
rfphon4 1
rfatpol4 1 2
rfdir4 1 1 1
tolvrs4 1.0d-10
prepalw4 1 # Deactivates symmetries for the lw routines

#Set 5: Long-wave magnitudes calculation

optdriver5 10 # Activates long-wave driver
kptopt5 2
get1wf5 4
get1den5 4
getddk5 2
getdkd5 3
lw_qdrpl5 1 # Calculate Quadrupoles
lw_flexo5 2 # Calculate CI flexoelectric tensor

#Common input variables

getwfkg 1
useylm 1
nqpt 1
qpt 0.0E+00 0.0E+00 0.0E+00
...
...
LONG-WAVE DFPT: IMPLEMENTATION DETAILS

Example of output files

abi_out

Quadripole tensor, in cartesian coordinates,

<table>
<thead>
<tr>
<th>atom</th>
<th>atddir</th>
<th>efdir</th>
<th>qgrdir</th>
<th>real part</th>
<th>imaginary part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.0000000044</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0000000044</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
</tr>
</tbody>
</table>

...

Electronic flexoelectric tensor, in cartesian coordinates,

<table>
<thead>
<tr>
<th>efdir</th>
<th>qgrdir</th>
<th>strdir1</th>
<th>strdir2</th>
<th>real part</th>
<th>imaginary part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.4661642508</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-0.3465045498</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-0.3465045498</td>
<td>0.0000000000</td>
</tr>
</tbody>
</table>

_O_DS5_DDB

**** Database of total energy derivatives ****

Number of data blocks= 1

3rd derivatives - # elements : 216

<table>
<thead>
<tr>
<th>qpt</th>
<th>0.000000E+00</th>
<th>0.000000E+00</th>
<th>0.000000E+00</th>
<th>1.000000</th>
<th>0.000000E+00</th>
<th>0.000000E+00</th>
<th>0.000000E+00</th>
<th>1.000000</th>
<th>0.000000E+00</th>
<th>0.000000E+00</th>
<th>0.000000E+00</th>
<th>1.000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.0000000000</td>
<td>0.22644265123610D+14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.0000000000</td>
<td>0.2435593235786D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.17956332706089D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4546072058968D+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.246550377839D+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.2472695695078D+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.5823482736192D+02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.29456056346091D+14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.29063615520488D+14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ddq ipert=natom+8
LONG-WAVE DFPT: IMPLEMENTATION DETAILS

State of the implementation

NOT YET MERGED WITH THE TRUNK

Current limitations:

- Perturbations symmetries deactivated
- LDA exclusive
- Not adapted for non-linear core corrections
- \(\text{kptopt} \neq 1 \)
- \(\text{useylm} = 1 \)
CONTENTS

I LONG-WAVE DFPT APPROACH TO SPATIAL DISPERSION
 Flexoelectric Tensor
 Dynamical Quadrupole Tensor

II NUMERICAL RESULTS
 Method validation
 Convergence study

III IMPLEMENTATION DETAILS

IV CONCLUSIONS AND OUTLOOK
Conclusions and Outlook

• CI FxE and quadrupole tensor from a multi-dataset ABINIT run
• No new ddq response functions required
• Little computational cost
• Developing of full FxE tensor (lattice and mixed contribs.)
• Other spatial dispersion properties (natural optical/acoustical activity)

THANK YOU!