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Orbital Magnetism

Overview

Context

Orbital magnetism in insulators:

◮ Magnetic dipole moment density due to charge current (no
spin)

M ≈ −
1

2

∑

n

∫

BZ

dk〈ψnk|r × p|ψnk〉

◮ Induced by magnetic fields (external or nuclear dipoles)

◮ Observable: chemical shielding in NMR experiments

◮ Typical scale: α2 ≈ 5× 10−5
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Orbital Magnetism

Overview

All-electron formulae
Chern number:

C =
i

2π

∑

n

∫

BZ

dk 〈∂kunk| × |∂kunk〉

=
i

2π
ǫαβγ êα

∫

BZ

dkTr [(∂βρk)(1 − ρk)(∂βρk)]

where ρk is the ground state density operator (valence bands).

◮ The Chern number is strictly zero in an insulator with TR
symmetry

◮ Presence of magnetic field breaks TR symmetry

◮ Chern number measures presence of charge circulation.

See Ceresoli, Thonhauser, Vanderbilt, Resta, PRB 74, 024408 (2006)
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Orbital Magnetism

Overview

All-electron formulae

Magnetization

M =
i

(2π)3

∑

n

∫

BZ

dk 〈∂kunk| × (Hk + Enk) |∂kunk〉

or more generally, energy due to external magnetic field:

E (n) =

∫

BZ

dkTr
[(

ρ
(n)
kCC + ρ

(n)
kVV

)

H
(0)
k

]

,

where CC and VV refer to conduction and valence spaces, and
H(0) is the field-free Hamiltonian.

Gonze and Zwanziger, PRB 84, 064445 (2011)
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Orbital Magnetism

Overview

Strategy for ABINIT

◮ Write PAW total energy in presence of external B field

◮ Compute first order change in energy due to external field
(this is the magnetization through E (1) = M ·B)

◮ The resulting M would be zero in an insulator due to TR
symmetry so break this by also adding nuclear magnetic
dipoles µ

◮ Result yields chemical shielding through converse method,

σij = −Ω
∂Mi

∂µj

Thonhauser, Ceresoli, Mostofi, Marzari, Resta, Vanderbilt, J. Chem.

Phys. 131, 101101 (2009)
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Orbital Magnetism

Nuclear Magnetic Dipoles

Hamiltonian

A nuclear magnetic dipole moment m at site R generates a vector
potential

As =
µ0

4π

m× (r− R)

|r − R|3

and appears in the Hamiltonian as

H =
1

2me

(p− qAs)
2 =

p2

2me

−
q

me

As · p+ . . .

to first order, in SI units. In this gauge, As · p = p · As.
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Orbital Magnetism

Nuclear Magnetic Dipoles

Atomic units

In atomic units the first order nuclear dipole Hamiltonian is

α2m× (r − R) · p

|r − R|3
≡ α2 LR ·m

|r − R|3

where α is the fine structure constant, and the electron charge
q = −1. LR = (r − R)× p. This term has lattice periodicity.
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Orbital Magnetism

Nuclear Magnetic Dipoles

Application of the Hamiltonian

◮ PAW spheres: the Hamiltonian is applied as H = α2 LR·m
|r−R|3

.

◮ Planewaves: apply α2As · p
◮ From As(r) =

∑

G As(G)e
−2πiG.r we find

As(G) =
−4πi

2πΩ

m× G

|G|2
e−2πiG.R

◮ Generate As(r) via FFT.
◮ Apply As(r) to

p|unk〉 =
∑

G

2π(k+ G)ck(G)|G〉

by FFT, followed by multiplication, followed by FFT back to
reciprocal space.
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Orbital Magnetization

Total energy in external field
In SI units, the Hamiltonian and vector potential are

H =
1

2m
(p− qA0)

2 + V ,

A0 =
1

2
B× r.

The GIPAW transform operator is

T = 1 +
∑

Ri

U
[

|φiR〉 − |φ̃iR〉
]

〈p̃iR |U
†

where U = exp
(

− iq
2~r · R× B

)

.

Pickard and Mauri, PRB 63, 245101 (2001)
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Orbital Magnetism

Orbital Magnetization

GIPAW Total Energy

Total energy consists of core terms, and Ẽ + (E 1 − Ẽ 1) as usual.
However, the following terms depend on B:

◮ Kinetic energy includes A0(r), and A0(r − R) on-site.

◮ ρij =
∑

occ
〈ψn|U|p̃iR〉〈p̃jR |U

†|ψn〉

◮ n1(r) =
∑

ij ρij〈φi |r〉〈r|φj 〉

◮ ñ1(r) =
∑

ij ρij〈φ̃i |r〉〈r|φ̃j 〉

◮ S = 1 +
∑

Rij U|p̃iR〉
[

〈φiR |φjR〉 − 〈φ̃iR |φ̃jR〉
]

〈p̃jR |U
†

Still problematic due to A0(r) and related terms.
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Orbital Magnetization

Magnetic Translation Invariance

Key feature in the presence of an external magnetic field:

O(r1, r2) = Ō(r1, r2)e
− iq

2~
B·r1×r2 ,

where Ō(r1 + R, r2 + R) = Ō(r1, r2).

Zak, Phys. Rev. 6, 1602A (1964)

12 / 30



Orbital Magnetism

Orbital Magnetization

Hamiltonian and density operator

The energies are associated with a density operator and
Hamiltonian via

E (B) = min
ρ=ρSρ

{Tr[ρH(B)]} = Tr[ρ̄H̄].

Both ρ and H have lattice periodic kernels, due to magnetic
translation invariance. For the Hamiltonian this is just the
zero-field Hamiltonian.
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Orbital Magnetism

Orbital Magnetization

Density operator

The translationally invariant density operator kernel can be
expressed through the idempotency condition, yielding to first order

ρk = ρkSkρk −
i

2
ǫαβγBα×

[

(∂βρk)(∂γSk)ρk + (∂βρk)Sk(∂γρk) + ρk(∂βSk)(∂γρk)
]

Now the B field dependency has been transferred off of H and
onto ρ, in terms of lattice periodic H and ρ.
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Orbital Magnetization

Energy first order in B

The first order energy, arising from the planewave kinetic energy
contribution A0(r) · p and ρij , is obtained from the perturbed
density operator as

∫

dk Tr[ρ
(1)
k H

(0)
k ]

Notice that with translational invariance restored, there is only

H
(0)

, the zero-field Hamiltonian, all field-dependence is explicitly
on ρ(1). [N.B. there is also an explicit on-site term that is already
translation invariant]
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Orbital Magnetization

Perturbing the density operator

The idempotency condition ρ = ρSρ yields in a perturbation
expansion:

ρ0k = ρ0kS
0
kρ

0
k

ρ1k = ρ1kS
0
kρ

0
k + ρ0kS

1
kρ

0
k + ρ0kS

0
kρ

1
k −

i

2
ǫαβγBα ×

[

(∂βρ
0
k)(∂γS

0
k)ρ

0
k + (∂βρ

0
k)S

0
k(∂γρ

0
k) + ρ0k(∂βS

0
k)(∂γρ

0
k)
]

Because the energy term depends only on Tr[ρ
(1)
k H

(0)
k ], we need

these expressions projected only in the unperturbed valence and
conduction subspaces.
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Orbital Magnetization

Subspace projections

Valence subspace:

(ρ0kS
0
k)ρ

1
k(S

0
kρ

0
k) = −ρ0kS

1
kρ

0
k +

i

2
ǫαβγBα(ρ

0
kS

0
k) [. . .] (S

0
kρ

0
k)

Conduction subspace:

(

1− ρ0kS
0
k

)

ρ1k

(

1− S
0
kρ

0
k

)

=

−
i

2
ǫαβγBα

(

1− ρ0kS
0
k

)

[. . .]
(

1− S
0
kρ

0
k

)

where [. . .] are the three partial derivative terms.
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Orbital Magnetization

Discretization

Derivatives with respect to k can be computed by a finite
difference procedure:

∂βρk ≈
ρk+∆β

− ρk−∆β

2∆β

∂β |ũnk〉〈ũnk| ≈
|ũnk+∆β

〉〈ũnk+∆β
| − |ũnk−∆β

〉〈ũnk−∆β
|

2∆β

or more compactly, via σ = ±1:

∂βρ =
∂

∂kβ

occ
∑

n

|ũnk〉〈ũnk| ≈

occ
∑

n

∑

σ=±1

σ|ũnk+σ∆β
〉〈ũnk+σ∆β

|

2∆β
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Orbital Magnetization

k Derivatives (other tricks)

Differentiating the idempotency condition leads to

(ρ0kS
0
k)∂kρ(S

0
kρ

0
k) = −ρ(∂kS)ρ valence

(1− ρ0kS
0
k)∂kρ(1− S

0
kρ

0
k) = 0 conduction

The valence-conduction cross terms are not zero.
The first order perturbation of S is

S
1
k = −

i

2
ǫαβγ

∑

Rij

|∂β p̃Rik〉〈∂γ p̃Rjk|
(

〈φRi |φRj〉 − 〈φ̃Ri |φ̃Rj〉
)
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Typical term: CC

−
i

2
ǫαβγTr[ρ̄

(1)
k H̄

(0)
k ]CCI =

−
i

2
ǫαβγ

occ
∑

n

〈ū
(0)
n,k|S̄

(0)
k (∂γ ρ̄

(0)
k )H̄

(0)
k (∂β ρ̄

(0)
k )S̄

(0)
k |ū

(0)
n,k〉.

The sum is evaluated using the discretized derivative as

1

2∆β2∆γ

∑

σβ ,σγ

σβσγ

occ
∑

n,n′,n′′

〈ū
(0)
n,k|S̄

(0)
k |ū

(0)
n′,k+σβ

〉

〈ū
(0)
n′,k+σβ

|H̄
(0)
k |ū

(0)
n′′,k+σγ

〉〈ū
(0)
n′′,k+σγ

|S̄
(0)
k |ū

(0)
n,k〉.
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Orbital Magnetization

Typical term: VV

+
i

2
ǫαβγTr[ρ̄

(1)
k H̄

(0)
k ]VVII =

+
i

2
ǫαβγ

occ
∑

n

〈ū
(0)
n,k|S̄

(0)
k (∂β ρ̄

(0)
k )S̄

(0)
k (∂γ ρ̄

(0)
k )

S̄
(0)
k ρ̄

(0)
k H̄

(0)
k ρ̄

(0)
k |ū

(0)
n,k〉,

with the sum as

1

2∆β2∆γ

∑

σβ ,σγ

σβσγ

occ
∑

n,n′,n′′

〈ū
(0)
n,k|S̄

(0)
k |ū

(0)
n′,k+σβ

〉

〈ū
(0)
n′,k+σβ

|S̄
(0)
k |ū

(0)
n′′,k+σγ

〉〈ū
(0)
n′′,k+σγ

|S̄
(0)
k |ū

(0)
n,k〉En,k.
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Orbital Magnetization

Objects needed

All expressions built from:

〈

un′k+∆kβ |S
0
k|unk+∆kγ

〉

, as found in Berry phase polarization
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Orbital Magnetization

Objects needed

All expressions built from:

〈
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Orbital Magnetization

Objects needed

All expressions built from:

〈

un′k+∆kβ |S
0
k|unk+∆kγ

〉

, as found in Berry phase polarization
〈

un′k|∂βS
0
k|unk+∆kγ

〉
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〈

unk|S
1
k|unk

〉

, derivatives of cprj
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Orbital Magnetization

Objects needed

All expressions built from:

〈

un′k+∆kβ |S
0
k|unk+∆kγ

〉

, as found in Berry phase polarization
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0
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unk|S
1
k|unk
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Orbital Magnetization

Objects needed

All expressions built from:

〈

un′k+∆kβ |S
0
k|unk+∆kγ

〉

, as found in Berry phase polarization
〈

un′k|∂βS
0
k|unk+∆kγ

〉

, analytical or finite difference
〈

unk|S
1
k|unk

〉

, derivatives of cprj
〈

unk|H
0
k|unk

〉

, ground state energies
〈

un′k+∆kβ |H
0
k|unk+∆kγ

〉

, quite non-standard
〈

p̃Rik+∆kβ |unk
〉

, computed from mkffnl and getcprj
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Orbital Magnetization

Output

AlP, with dipole (1.0, 0.0, 0.0) on Al site.
ucvol = 273.25

Chern number C from orbital magnetization

----C is a real vector, given along Cartesian directions----

C( 1) : real, imag -4.44485010E-08 -1.37238863E-16

C( 2) : real, imag -1.15269229E-11 -2.48938292E-16

C( 3) : real, imag -2.30421055E-12 3.75201531E-17

====================================================

====================================================

Orbital magnetization

----Orbital magnetization is a real vector, given along Cartesian directions----

Orb Mag( 1) : real, imag -2.05820419E-06 8.53048647E-15

Orb Mag( 2) : real, imag -2.21745487E-11 3.43814941E-14

Orb Mag( 3) : real, imag -5.59227864E-12 -4.18570117E-14

====================================================

 400

 450

 500

 550

 600

 20  40  60  80  100  120  140

A
l 

sh
if

t 
in

 A
lP

, 
p

p
m

kptrlen

kpt convergence

28 / 30



Orbital Magnetism

Orbital Magnetization

First results
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Summary

◮ Orbital magnetism coded for insulators (see m orbmag.F90),
currently in extensive tests

◮ Requires PAW

◮ Parallelized over k pts

◮ So grateful to Xavier Gonze and Marc Torrent for much help
and advice
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