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Orbital Magnetism

L Overview

Context

Orbital magnetism in insulators:
» Magnetic dipole moment density due to charge current (no
spin)
1
M~ 3 Z/B Ak (|t X i)
VA
n

» Induced by magnetic fields (external or nuclear dipoles)
» Observable: chemical shielding in NMR experiments
» Typical scale: a® ~5 x 107>
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Orbital Magnetism
L Overview

All-electron formulae
Chern number:

i
C = EEH:/BZ dk (Ok k| X [Oktnk)

1

= o-capyén /BZ dkTr [(Dsp)(1 — pk)(9spK)]

where py is the ground state density operator (valence bands).

» The Chern number is strictly zero in an insulator with TR
symmetry

P> Presence of magnetic field breaks TR symmetry
» Chern number measures presence of charge circulation.

See Ceresoli, Thonhauser, Vanderbilt, Resta, PRB 74, 024408 (2006)
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Orbital Magnetism
L Overview

All-electron formulae

Magnetization
i
M=_—+= dk (O x (Hk + Enk) |0
(27)3 Z,,:/BZ (Okunk| x (Hi + En) |0k tnk)
or more generally, energy due to external magnetic field:

£ _ /B oKy (A2 +olh ) HO]

where CC and VV refer to conduction and valence spaces, and
HO) s the field-free Hamiltonian.

Gonze and Zwanziger, PRB 84, 064445 (2011)
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Orbital Magnetism

L Overview

Strategy for ABINIT

> Write PAW total energy in presence of external B field

» Compute first order change in energy due to external field
(this is the magnetization through E(Y) = M - B)

» The resulting M would be zero in an insulator due to TR
symmetry so break this by also adding nuclear magnetic

dipoles u
P Result yields chemical shielding through converse method,
oOM;
oij =—%Q d
Op,j

Thonhauser, Ceresoli, Mostofi, Marzari, Resta, Vanderbilt, J. Chem.
Phys. 131, 101101 (2009)
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Orbital Magnetism
I—Nuclear Magnetic Dipoles

Hamiltonian

A nuclear magnetic dipole moment m at site R generates a vector

potential
A _ Momx (r—R)
°* 47 |r—RP3

and appears in the Hamiltonian as

1

2
P —iAs-p+...
2me

H =
2me me

(p— qu)2 =

to first order, in Sl units. In this gauge, As-p = p - As.
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Orbital Magnetism
I—Nuclear Magnetic Dipoles

Atomic units

In atomic units the first order nuclear dipole Hamiltonian is

smx(r—R)-p > Lrp-m
r—RP?

where « is the fine structure constant, and the electron charge
g=—1. Lg = (r — R) x p. This term has lattice periodicity.

8/30



Orbital Magnetism
I—Nuclear Magnetic Dipoles

Application of the Hamiltonian

LR~m
r—RP

» PAW spheres: the Hamiltonian is applied as H = o?

» Planewaves: apply o’As - p
> From Ay(r) = > ¢ As(G)e 2™6r we find

—4rimxG _, icR
e ,

A(G) = 2:q Tap

» Generate Ag(r) via FFT.
> Apply Ag(r) to

plun) =Y _ 27(k + G)a(G)|G)
G

by FFT, followed by multiplication, followed by FFT back to
reciprocal space.
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Orbital Magnetism
I—Orbital Magnetization

Total energy in external field
In Sl units, the Hamiltonian and vector potential are

1 2
H = —(p—-gA 4
1
Ap = -Bxr.
0 5 xXr
The GIPAW transform operator is

T=1+ Z U [|¢iR> - |</~>iR>] (pir| U
Ri

where U = exp (—é'%r -R x B).

Pickard and Mauri, PRB 63, 245101 (2001)
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Orbital Magnetism
L Orbital Magnetization

GIPAW Total Energy

Total energy consists of core terms, and £ + (E* — El) as usual.
However, the following terms depend on B:

» Kinetic energy includes Ag(r), and Ag(r — R) on-site.
> pij = Dooce (Ul UIBiR)(Birl UT[n)

> ni(r) = 325 pi(iln)(rley)

(r) = 325 i (ilr) (rld))

> S =1+ g; Ulpir) | (dirldjr) — (PirlSir)| (Bir|UT

Still problematic due to Ag(r) and related terms.

) =
) =

n
> il
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Orbital Magnetism

L Orbital Magnetization

Magnetic Translation Invariance

Key feature in the presence of an external magnetic field:

O(r1,r2) = O(rl, rz)e_éihB'TIsz
where O(r1 + R, r2 + R) = O(r1,r2).

Zak, Phys. Rev. 6, 1602A (1964)



Orbital Magnetism
I—Orbital Magnetization

Hamiltonian and density operator

The energies are associated with a density operator and
Hamiltonian via

E(B) = min {Tx[pH(B)]} = Tx[3H]
p=pSp
Both p and H have lattice periodic kernels, due to magnetic

translation invariance. For the Hamiltonian this is just the
zero-field Hamiltonian.
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Orbital Magnetism
L Orbital Magnetization

Density operator

The translationally invariant density operator kernel can be
expressed through the idempotency condition, yielding to first order

— i
Pk = ﬁkskﬁk - Eea,B'yBaX
[(aﬁﬁk)(avgk)ﬁk + (05Px) Sk (04 Px) + ﬁk(aﬁgk)(5wﬁk)]

Now the B field dependency has been transferred off of H and
onto p, in terms of lattice periodic H and p.
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Orbital Magnetism
L Orbital Magnetization

Energy first order in B

The first order energy, arising from the planewave kinetic energy
contribution Ag(r) - p and pjj, is obtained from the perturbed

density operator as
/ dk Te[pl) A

Notice that with translational invariance restored, there is only

—+(0 . . : : .
H( ), the zero-field Hamiltonian, all field-dependence is explicitly
on 1), [N.B. there is also an explicit on-site term that is already
translation invariant|
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Orbital Magnetism
L Orbital Magnetization

Perturbing the density operator

The idempotency condition p = pSp yields in a perturbation

expansion:
-0 —0¢0-0
Pk = PkSkPk
-1 _ _130_0 —031—0 —030—1 ! B
Pk = ProkPk T P2kPr T Pr2kP €apyDa X

2
. —=0,_ _0\=0 _ . —=0 .
(95700 S0)R + (957R)Si(0:78) + P95 5) (D7)

Because the energy term depends only on Tr[ﬁl((l) ﬁ(ko)], we need
these expressions projected only in the unperturbed valence and
conduction subspaces.
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Orbital Magnetism
I—Orbital Magnetization

Subspace projections

Valence subspace:
(PSOASIR) = TSR+ e BalPESW [ (507
Conduction subspace:
(1-750) 7 (1-Semt) =
e Bo (17050 [ (1 - 5020)

where [...] are the three partial derivative terms.
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Orbital Magnetism
I—Orbital Magnetization

Discretization

Derivatives with respect to k can be computed by a finite
difference procedure:

pk-i-A/@ Pk—Aﬁ
20

|Gkt n g ) (nk+-ag | = [Tnk—ng) (Gnk—n
27,

afjpk ~

O dini) (nk| ~

or more compactly, via 0 = £1:

occ occ

U|Unk+aA <Unk+aA
TR SRRTENND 3 pp =8 Lot

n o—t1 Agp

18/30



Orbital Magnetism
I—Orbital Magnetization

k Derivatives (other tricks)

Differentiating the idempotency condition leads to
—0c0 —=0_¢
(S0 hn(SeB) = —p(cS)p valence
(1- ﬁggg)ﬁkp(l - §ﬁp2) =0 conduction

The valence-conduction cross terms are not zero.
The first order perturbation of S is

S = _éeaﬁwz |0 Prik) (O Prik| (<¢Ri|</>Rj> - <<5Ri|€gRj>)

Rij
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Orbital Magnetism
I—Orbital Magnetization

Typical term: CC

i _(1) 5(0
- Efaﬁva[Pl(( AN eer =

——eaﬂa,z 01590, A (955 5 15).

The sum is evaluated using the discretized derivative as

occ

L 0) 2(0), -(0)
28520, Y sy > Gl S N ke,

03,0~ n,n’,n'

0 0 0 0 0 0
{ S)’)k+0'5|H( )|u£”)k+aa,>< E)”)k+o'7|5( )|u( ))
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Orbital Magnetism
I—Orbital Magnetization

Typical term: VV

i _
+ EGQBVTY[I_’S) H(o)]vvn =

occ

e LN 0:)3L 07
5(0) (O)H(O) (0)| (0)>

with the sum as

occ

L 0) z(0), ~(0)
i X S G

0-5 Negy n, n' n//
0 0 0 0 0
(B ket 1SN sy YTy 1518 En e
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Orbital Magnetism

L Orbital Magnetization

Objects needed

All expressions built from:

=0 : .
<un’k+Ak3‘5k‘unk+Ak7>: as found in Berry phase polarization
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Orbital Magnetism

L Orbital Magnetization

Objects needed

All expressions built from:

=0 : .
<un’k+Ak5‘Sk‘unk+Ak7>: as found in Berry phase polarization

-0 : o
<un/k\855k\unk+Ak7> , analytical or finite difference
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Orbital Magnetism

L Orbital Magnetization

Objects needed

All expressions built from:

=0 . .
<un’k+Ak5‘Sk‘unk+Ak7>: as found in Berry phase polarization

=0 : o
<u,,/k\8,35k\unk+Ak7> , analytical or finite difference

<unk|§i|unk> , derivatives of cprj

PNE
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Orbital Magnetism
I—Orbital Magnetization

Objects needed

All expressions built from:

=0 : .
<un’k+Ak5‘Sk‘unk+Ak7>: as found in Berry phase polarization
=0 : o
<u,,/k\8,35k\unk+Ak7> , analytical or finite difference

=1 —
<u,,k|5k|u,,k> , derivatives of cprj

—0 .
<u,,k]Hk]u,,k> , ground state energies
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Orbital Magnetism
I—Orbital Magnetization

Objects needed

All expressions built from:

<un/k+Ak6\§ﬁ\unk+Ak7>, as found in Berry phase polarization
<u,,/k\8,3§g\unk+Ak7> , analytical or finite difference
<unk|§i|unk> , derivatives of cprj
<unk]ﬁ2]unk> , ground state energies

—0 .
<Un’k+Ak5|Hk|unk+Ak7> , quite non-standard
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Orbital Magnetism
L Orbital Magnetization

Objects needed

All expressions built from:

<u,,/k+Ak/3|§2|u,,k+Akv>, as found in Berry phase polarization
<un/k|85§£|unk+Akv> , analytical or finite difference
<unk|§i|unk> , derivatives of cprj
<unk|ﬁ2|unk> , ground state energies

—0 .
<un’k+Akﬁ‘Hk‘unk+Akf\,> , quite non-standard

( Prik+nks | Unk ) » computed from mkffnl and getcprj
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Orbital Magnetism
I—Orbital Magnetization

Output

AIP, with dipole (1.0, 0.0, 0.0) on Al site.

ucvol = 273.25
kpt convergence
600
Chern number C from orbital magnetization =
----C is a real vector, given along Cartesian directions---- % 550
9
c( 1) : real, imag -4.44485010E-08 -1.37238863E-16 é 500
c( 2) : real, imag -1.15269229E-11 -2.48938292E-16 &
C(  3) : real, imag -2.30421055E-12 3.75201531E-17 7450
<
400

20 40 60 80 100 120 140
kptrlen

Orbital magnetization
----Orbital magnetization is a real vector, given along Cartesian directions----
Orb Mag( 1) : real, imag -2.05820419E-06 8.53048647E-15
Orb Mag(  2) : real, imag -2.21745487E-11 3.43814941E-14
Orb Mag(  3) : real, imag -5.59227864E-12 -4.18570117E-14
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L Orbital Magnetization

First results

200 ‘
abinit H—
QE
vasp mm—
g 150 1
=3
(=9
<
%, 100 - 1
8
=5
g
=z 50 1
o
5=
=
o m ’
= S
< 4 o N N\
v QY' ™ o’v V/Y’
o = = = ERINe
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Orbital Magnetism
I—Orbital Magnetization

Summary

» Orbital magnetism coded for insulators (see m_orbmag.F90),
currently in extensive tests

» Requires PAW
» Parallelized over k pts

» So grateful to Xavier Gonze and Marc Torrent for much help
and advice

O
|
1
]
i
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