
The test farm and its evolution.

Jean-Michel Beuken

Université catholique de Louvain
Institute of Condensed Matter and Nanosciences, and ETSF

Louvain-la-Neuve, Belgium.

In order to keep the individual developments in line with the global objectives
of the project, all contributions have to be periodically reviewed because every
new development has a significant probability to break the correct behaviour of
another feature. This concern has been addressed in Abinit thanks to the set-
up of a test suite and a Test Farm [1]. It examines on-demand the tentative
contribution of each developer. This test farm does not only build the latest
contributions, but also runs the test suite and validates the results. Thanks to
this tool, the contribution of each developer is validated before it is considered
for merge in the the trunk.
Our Test Farm is made of two distinct parts: a series of computer platforms pro-
viding various development and running environments, and BuildBot[2], a soft-
ware development continuous integration tool which automates the compile/test
cycle required to validate changes to the project code base. By automatically
rebuilding and testing the source tree each time something has changed, build
problems are pinpointed early, before other developers are inconvenienced by
the failure. By running the builds on a variety of platforms, developers will at
know shortly afterwards whether they have broken the build or have encountered
portability issues.
Since 2009, the Test Farm has grown and evolved. Today, twenty-one slaves with
a diversity of open source and proprietary operating systems, compilers, MPI
libraries and numerical libraries are provided[3].

References

[1] Y. Pouillon, J-M Beuken, T. Deutsch, M.Torrent and X. Gonze, Organiz-
ing Software Growth and Distributed Development: The Case of Abinit,
Computing in Science and Engineering, vol. 13, no. 1, pp. 62-69, (2011).

[2] https://buildbot.net/

[3] https://wiki.abinit.org/doku.php?id=bb:slaves


