
Reducing technical debt and 
complexity by promoting 
collaborations
Yann Pouillon
Universidad de Cantabria, Santander, Spain

2019/05/20
9th international ABINIT developer workshop, Louvain-la-Neuve, Belgium



Acknowledgments

Cliparts downloaded from http://clipart-library.com/

http://clipart-library.com/


Outline
● What is technical debt?

● Examples

● Collaboration is prevention



What is technical debt?



Quick summary of 
technical debt

Technical debt is a normal 
byproduct of ongoing 
developments.

● Avoiding work today by promising to do it tomorrow
● Trade-off: benefit(getting it now) > burden(fixing later)

● Types of technical debt
○ Deliberate: strategic/tactical choice (must track)
○ Accidental: implementation reveals flaws
○ Bit rot: complexity from outdated design

● What it is not
○ Procrastination
○ Bad programming practices (= unsustainable)
○ Failure of planning (= planning for failure)
○ “Rush-to-keyboard” syndrome

● How to avoid it
○ Design first
○ Refactor periodically (e.g. every other year)
○ Test-Driven Development



Typical sources of 
technical debt

What got you here won’t 
get you there.

● Evolving understanding
○ Design patterns, architecture, standards
○ Code reviews, pair programming

● Change in context
○ Languages: F90 → F2003 → C++14, Py2 → Py3
○ Processes & tools: Bazaar → Git+Gitlab
○ Philosophy: silos, monoliths → shared modules
○ Availability: careers, single points of failure

● Deviation from original purpose
○ Fallbacks: MPI-IO ⇒ HDF5 complexity

2000 2019



Impact and 
remediation

● Which area does the technical debt impact?

● How intense / extended is the impact?

● Who does it affect?

● Does it prevent other efforts?

● Does it hinder collaboration?

● How urgent is it to remediate?

● What is the first step to remediate it?



Examples of technical debt



Example: abilint

From an asset to a road 
block.

● Why?
○ Fortran: no automatic dependencies
○ No explicit Fortran interfaces

⇒ segfaults, unpredictability

● 2005-2018: abilint for call graph + interfaces
○ Machine changes in versioned files
○ No Fortran 2003 support
○ Complex and single-threaded

● Evolution of ABINIT
○ 400 klines ↝ 1100 klines
○ 15 ↝ 40 contributors
○ Procedural programming ↝ OOP 



Example: Bazaar

When the context kills the 
“VCS for human beings”.

● Why?
○ CVS unsuitable, Subversion insufficient
○ Need for Distributed Version Control
○ Bazaar: user-friendly, easy to learn

● 2004-2016: Bazaar for Version Control
○ Still immature when adopted
○ 2005-2007: C → Python 2 → GNU Project
○ 2014-2016: end of story

● All factors external to ABINIT
○ Private funding of Bazaar
○ Development within a single company
○ Considered as a project, not a product



Example: ABINIT 
Fallbacks

From a quick fix to an 
infrastructure component.

● Why?
○ ABINIT shipped with dependencies
○ Fortran modules ⇒ binary 

incompatibilities
○ Developers need help

● 2005-2014: “temporary” ABINIT component
○ Minimalistic, consistent set of versions
○ Heterogeneous: C, F90, F95, F2003
○ Individual test suites not run
○ Breaking feedback loops

● 2014-2019: standalone package
○ Let build system support alternatives
○ Large deviation from original purpose
○ Single-point-of-failure removal



Technical debt in the build system



User interface of 
the build system

How to stabilize the UI 
while adjusting to evolving 
specifications?

● Automatic makefile generation
○ Design of abinit.src: before ConfigParser
○ Executed Python = security vulnerability

● Oriented on human error correction, but
○ Proliferation of automated frameworks
○ Complexity of dependencies (e.g. linalg)

● Interactions between components ⇒ team 
work



Circular 
dependency

ABINIT depends on 
BigDFT which depends on 
… ABINIT.

● 2009: BigDFT internal copy of ABINIT low-level
○ Affects fallbacks, build system, source
○ Complexity from namespace clashing

● Social cause ⇒ solution not only technical

● Stage 1: rename ABINIT low level (2011-2015)

● Stage 2: maintain patched BigDFT (2013-2019)

● Stage 3: split ABINIT source tree (2017-2019)

● Stage 4: restructure build system (2016-2019)

● Stage 5: organize ABINIT-BigDFT collaboration



Fortran

The Fortran Standard 
Committee does not 
address core standard 
issues. 

● Main issue: Fortran modules not in standard
○ Incompatible between compiler vendors
○ Incompatible between compiler versions
○ Undefined behaviours with nested deps
○ Full automation impossible

● Since 2015: little evolution of standard
○ Main focus: interoperability with C
○ Vendors do not bother going to meetings

● Since 2017: the beginning of the end?
○ Developers switching to C++
○ Parallelization around Python 3
○ Fortran openly hated by young researchers

● Build system: Fortran = #1 complexity source



Rolling-wave roadmap



2019 Q2

Split of the source tree
New build-system UI

2019 Q3

ABINIT low-level refactoring
Test farm upgrades

LibPAW package
Build-system team training

2019 Q4

ABINIT Bundle
Build-system team operating

Build-system refactoring

2020 Q1

Discussions with ESL
Integration of efforts

2020 Q2

Who knows?



Thank you!


