Reducing technical debt and
complexity by promoting
collaborations

Yann Pouillon
Universidad de Cantabria, Santander, Spain

2019/05/20
Oth international ABINIT developer workshop, Louvain-la-Neuve, Belgium



Acknowledgments

cecam

Centre Européen de Calcul Atomique et Moléculaire

Cliparts downloaded from http:/clipart-library.com/

cam

AN
ETSHF

European Theoretical
Spectroscopy Facility

““EUSpec



http://clipart-library.com/

e What is technical debt?

O u.tl | ne Examples

e Collaboration is prevention




What is technical debt?



Quick summary of
technical debt

Technical debt is a normal
byproduct of ongoing
developments.

Avoiding work today by promising to do it tomorrow
Trade-off: benefit(getting it now) > burden(fixing later)

Types of technical debt
o Deliberate: strategic/tactical choice (must track)
o Accidental: implementation reveals flaws
o Bit rot: complexity from outdated design

What it is not
o Procrastination
o Bad programming practices (= unsustainable)
o Failure of planning (= planning for failure)
o “Rush-to-keyboard” syndrome

How to avoid it
o Design first
o Refactor periodically (e.g. every other year)
o Test-Driven Development



Typical sources of
technical debt

What got you here won't
get you there.

Evolving understanding
o Design patterns, architecture, standards
o Code reviews, pair programming

Change in context
o Languages: F90 — F2003 — C++14, Py2 — Py3
o Processes & tools: Bazaar — Git+Gitlab
o Philosophy: silos, monoliths — shared modules
o Availability: careers, single points of failure

Deviation from original purpose
o Fallbacks: MPI-IO = HDF5 complexity

2

2000 2019



Impact and
remediation

Which area does the technical debt impact?
How intense / extended is the impact?

Who does it affect?

Does it prevent other efforts?

Does it hinder collaboration?

How urgent is it to remediate?

What is the first step to remediate it?



Examples of technical debt



e Why?
o Fortran: no automatic dependencies
Example: abilint o No explicit Fortran interfaces
= segfaults, unpredictability
From an asset to a road
block e 2005-2018: abilint for call graph + interfaces
o Machine changes in versioned files
o No Fortran 2003 support
o Complex and single-threaded

e Evolution of ABINIT
o 400 klines ~ 1100 klines
o 15~ 40 contributors
o Procedural programming ~ OOP




e Why?

o CVS unsuitable, Subversion insufficient
Example: Bazaar o Need for Distributed Version Control
o Bazaar: user-friendly, easy to learn

When the context kills the
“VCS for human beings”.

e 2004-2016: Bazaar for Version Control
o Still immature when adopted
o 2005-2007: C — Python 2 — GNU Project
o 2014-2016: end of story

e All factors external to ABINIT
o Private funding of Bazaar
o Development within a single company
o Considered as a project, not a product




e Why?

Example: ABINIT o ABINIT shipped with dependencies

Fallbacks o Fortran modules = binary
incompatibilities

o Developers need help

From a quick fix to an
infrastructure component.

e 2005-2014: “temporary” ABINIT component
o Minimalistic, consistent set of versions
o Heterogeneous: C, F90, F95, F2003
o Individual test suites not run
o Breaking feedback loops

e 2014-2019: standalone package
o Let build system support alternatives
o Large deviation from original purpose
o Single-point-of-failure removal




Technical debt in the build system



User interface of
the build system

How to stabilize the Ul
while adjusting to evolving
specifications?

Automatic makefile generation
o Design of abinit.src: before ConfigParser
o Executed Python = security vulnerability

Oriented on human error correction, but
o Proliferation of automated frameworks
o Complexity of dependencies (e.g. linalg)

Interactions between components = team

Work Build System

. Exports




Circular
dependency

ABINIT depends on
BigDFT which depends on
... ABINIT.

2009: BigDFT internal copy of ABINIT low-level

o Affects fallbacks, build system, source

o Complexity from namespace clashing
Social cause = solution not only technical
Stage 1: rename ABINIT low level (2011-2015)
Stage 2: maintain patched BigDFT (2013-2019)
Stage 3: split ABINIT source tree (2017-2019)
Stage 4: restructure build system (2016-2019)

Stage 5: organize ABINIT-BigDFT collaboration



Fortran

The Fortran Standard
Committee does not
address core standard
Issues.

Main issue: Fortran modules not in standard
o Incompatible between compiler vendors
o Incompatible between compiler versions
o Undefined behaviours with nested deps
o Full automation impossible

Since 2015: little evolution of standard
o Main focus: interoperability with C
o Vendors do not bother going to meetings

Since 2017: the beginning of the end?
o Developers switching to C++
o Parallelization around Python 3
o Fortran openly hated by young researchers

Build system: Fortran = #1 complexity source



Rolling-wave roadmap



ABINIT Bundle
Build-system team operating

Split of the source tree _ ‘
Build-system refactoring Who knows?

New build-system Ul

ABINIT low-level refactoring Discussions with ESL
Test farm upgrades Integration of efforts
LibPAW package

Build-system team training



Thank you!



