Machine learning *ab initio* calculations for Materials Science

Shyue Ping Ong, Chi Chen, Xiangguo Li, Zhi Deng

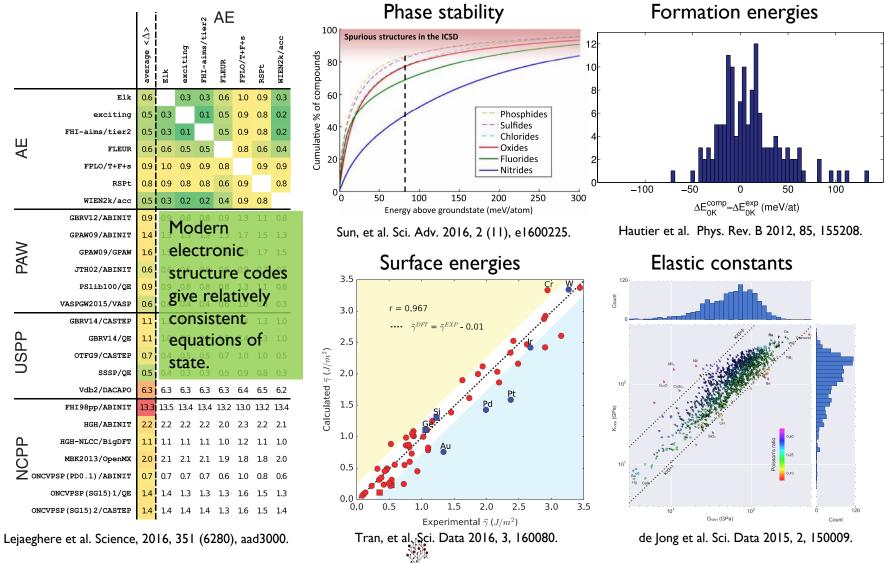
mater als virtual·lab

May 21, 2019

ABIDEV 2019

UC San Diego Jacobs School of Engineering

Electronic structure calculations are today <u>reliable</u> and <u>reasonably accurate</u>.



mater als virtual·lab

May 21, 2019

ABIDEV 2019

With reliable electronic structure codes + great computing power, we have big databases....

Materials Project¹

https://www.materialsproject.org

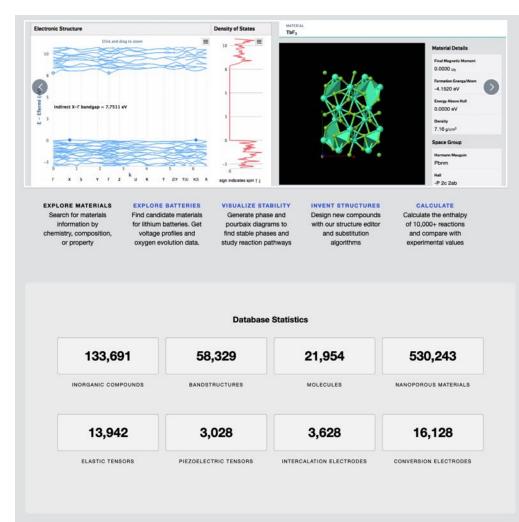
Powered by:

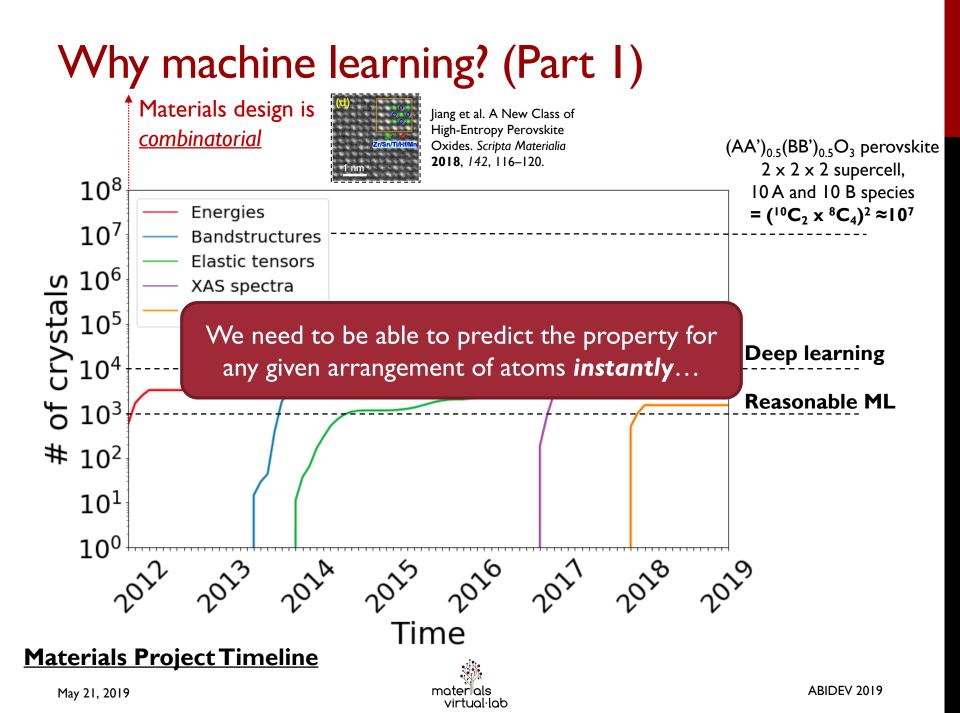
pymatgen² Custodian FireWorks³

¹ Jain et al. APL Mater. 2013, 1 (1), 11002.

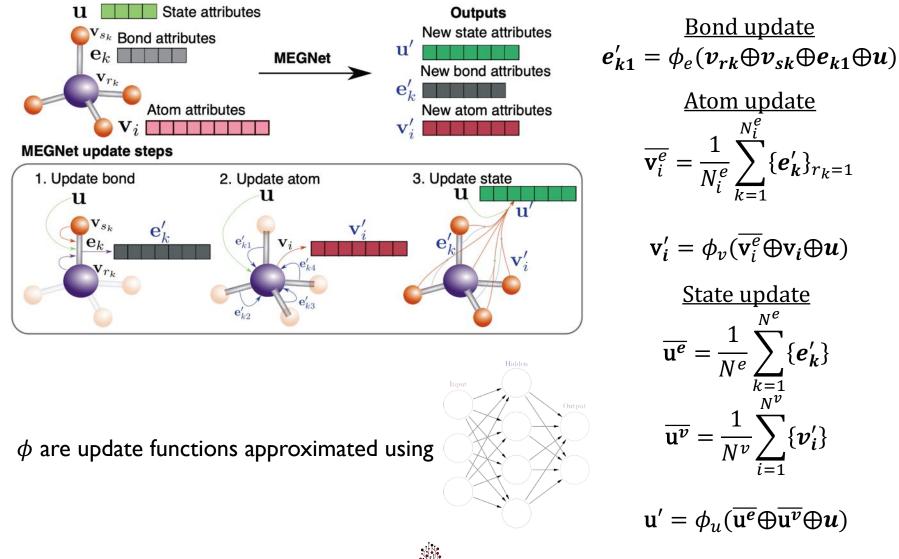
² Ong et al. Comput. Mater. Sci. 2013, 68, 314–319.

³ Jain et al. Concurr. Comput. Pract. Exp. 2015, 27 (17), 5037–5059.





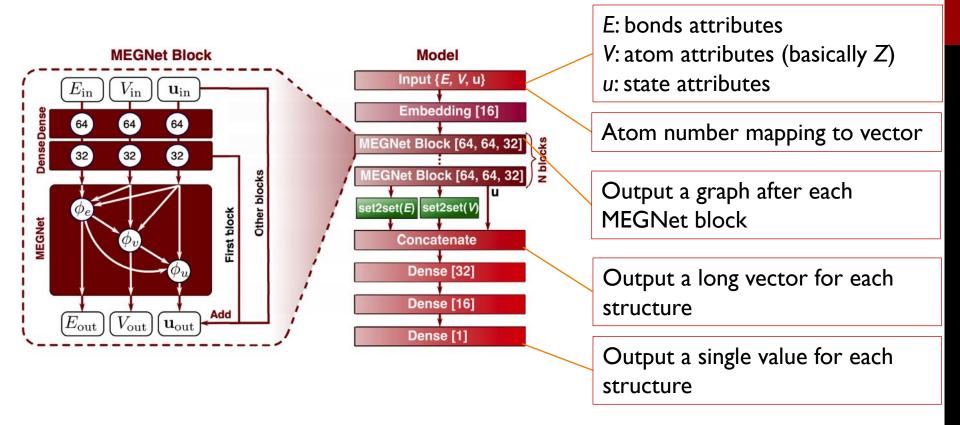
MatErials Graph Network (MEGNet)



mater als virtual·lab

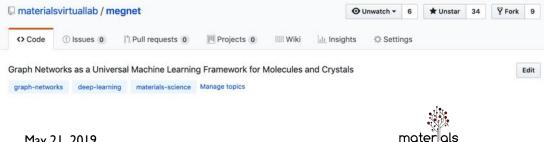
Atom update $\overline{\mathbf{v}_i^e} = \frac{1}{N_i^e} \sum_{k=1}^{N_i} \{\boldsymbol{e}_k'\}_{r_k=1}$ $\mathbf{v}_i' = \phi_v(\overline{\mathbf{v}_i^e} \oplus \mathbf{v}_i \oplus \mathbf{u})$ State update $\overline{\mathbf{u}^e} = \frac{1}{N^e} \sum_{k=1}^{N} \{ \boldsymbol{e}'_k \}$

Full model architecture



Implementation is open source at <u>https://github.com/materialsvirtuallab/megnet</u>.

virtual·lab



Performance on 130,462 QM9 molecules

80%-10%-10% train-validation-test split

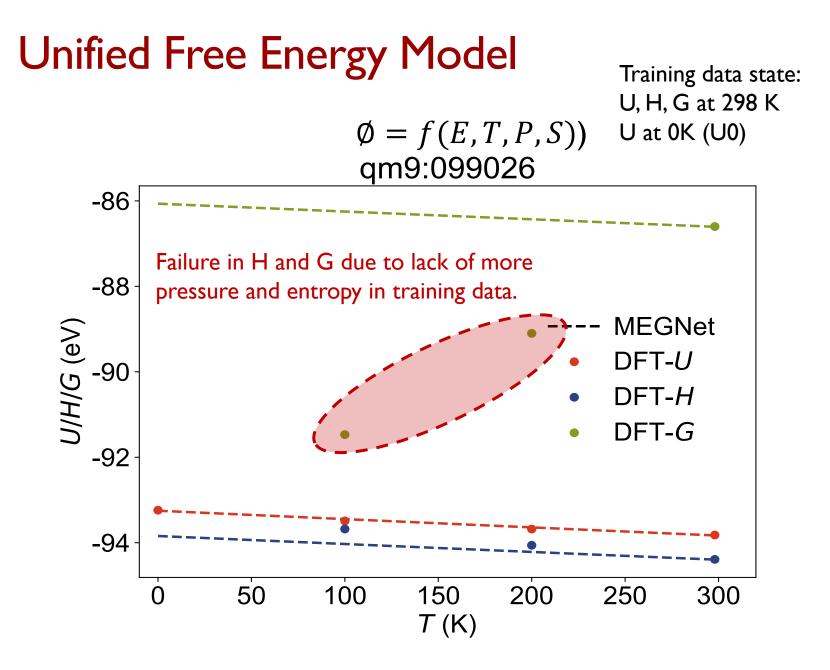
Property	Units	$\mathrm{MEGNet} ext{-Full}^*$	MEGNet-Simple ^{**}	$\operatorname{Schnet}^{36}$	$enn-s2s^{37}$	Benchmark ³²	Target
		(This Work)	(This Work)				
$\epsilon_{ m HOMO}$	eV	$0.038{\pm}0.001$	0.043	0.041	0.043	$0.055^{\ a}$	0.043
$\epsilon_{ m LUMO}$	eV	$0.031{\pm}0.000$	0.044	0.034	0.037	$0.064^{\ a}$	0.043
$\Delta\epsilon$	eV	$0.061{\pm}0.001$	0.066	0.063	0.069	$0.087^{\ a}$	0.043
ZPVE	meV	$1.40{\pm}0.06$	1.43	1.7	1.5	1.9 ^c	1.2
μ	D	$0.040 {\pm} 0.001$	0.050	0.033	0.030	$0.101^{\ a}$	0.1
α	bohr^3	$0.083{\pm}0.001$	0.081	0.235	0.092	$0.161^{\ b}$	0.1
$\langle R^2 \rangle$	bohr^2	$0.265 {\pm} 0.001$	0.302	0.073	0.180	-	1.2
U_0	eV	$0.009 {\pm} 0.000$	0.012	0.014	0.019	$0.025~^{c}$	0.043
U	eV	$0.010{\pm}0.000$	0.013	0.019	0.019	-	0.043
H	eV	$0.010{\pm}0.000$	0.012	0.014	0.017	-	0.043
G	eV	$0.010{\pm}0.000$	0.012	0.014	0.019	-	0.043
C_v	$cal(molK)^{-1}$	$0.030{\pm}0.001$	0.029	0.033	0.040	0.044 c	0.05
ω_1	cm^{-1}	$1.10{\pm}0.08$	1.18	-	1.9	2.71^{d}	10

11/13 properties reached chemical accuracy
11/13 properties state-of-the-art

Chemical Accuracy

Schnet: Schutt et al. J. Chem. Phys. 148, 241722 (2018)

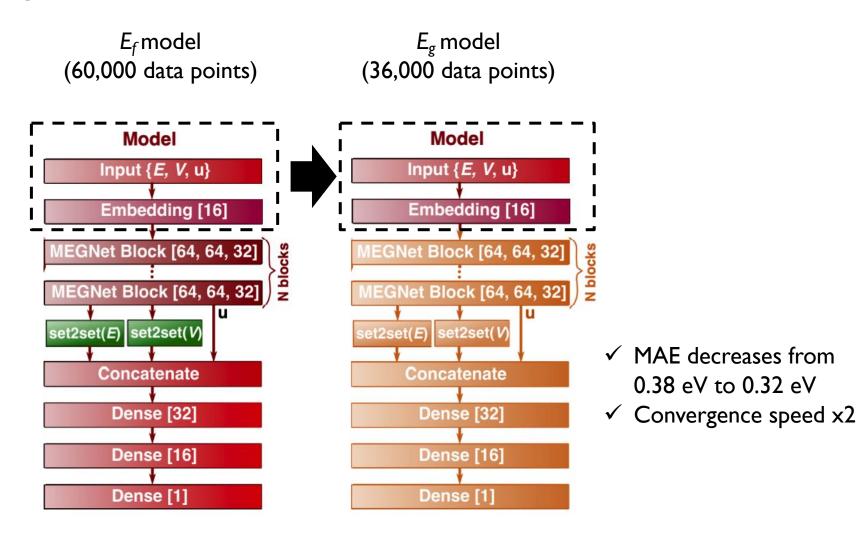
enn-s2s: Gilmer et al. Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.



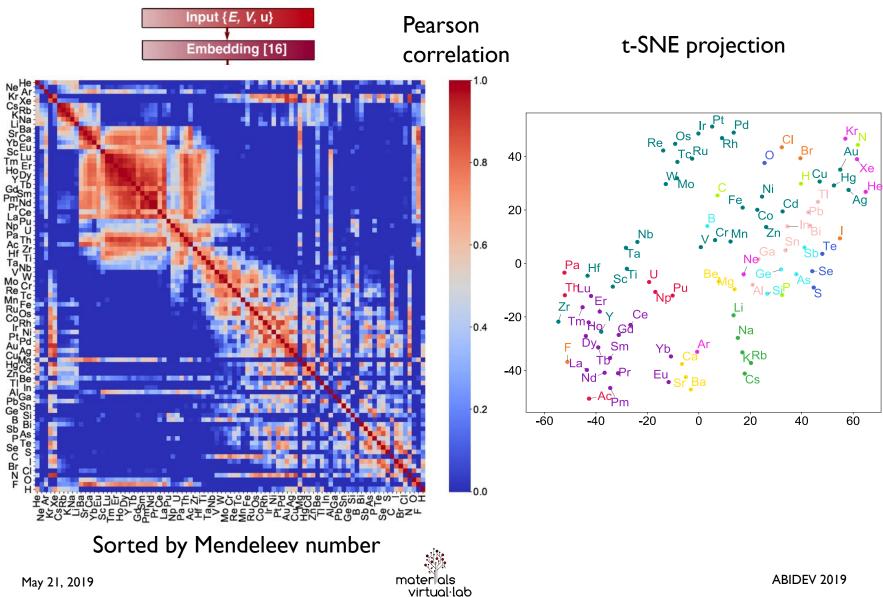
Performance on 69,000 Materials Project Crystals

		units	MEGNet	SchNet ³⁶	CGCNN ⁹
	elements		89	89	87
	$E_{ m f}$	eV atom ⁻¹	0.028 ± 0.000 (60 000)	0.035 (60 000)	0.039 (28 046)
"Noisy" Dataset too small	Eg	eV	0.33 ± 0.01 (36 720)		0.388 (16 485)
	$K_{ m VRH}$	log ₁₀ (GPa)	0.050 ± 0.002 (4664)		0.054 (2041)
	G _{VRH}	log ₁₀ (GPa)	0.079 ± 0.003 (4664)		0.087 (2041)
	metal classifier		$78.9\% \pm 1.2\% \\ (55 391)$		80% (28 046)
	nonmetal classifier		$\begin{array}{c} 90.6\% \pm 0.7\% \\ (55\ 391) \end{array}$		95% (28 046)

Transfer learning for improved convergence and speeed



Extracting chemistry from machine-learned models



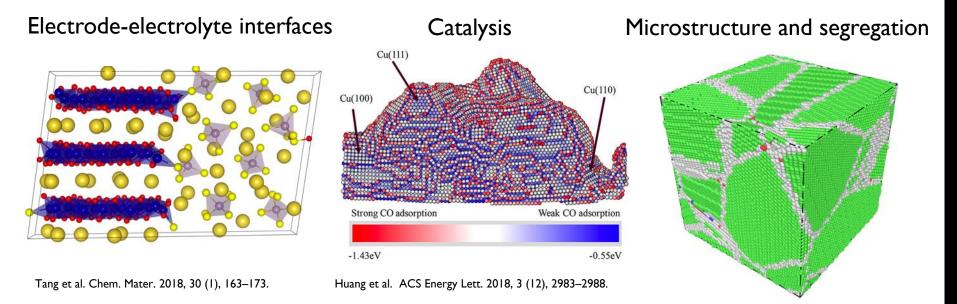
http://crystals.ai

Accelerating Materials Science through Al

Accurate Prediction Model

Why machine learning? (Part 2)

Many real-world materials problems are not related to bulk crystals.



Need linear-scaling with ab initio accuracy.

General procedure

Sample a sufficiently large dataset Describe local environment

Learn relationship between features and energy, force, etc.

Open databases

AFLOV MATERIALS PROJECT OQMD

- Requirements
 - Invariance to rotation, reflection, translation, and permutation
 - Uniqueness
 - Differentiability
- Examples:
 - Coulomb matrix
 - Symmetry functions
 - Bispectrum
 - Smooth overlap of atomic positions
 - Fragment descriptors
 - mater als virtual·lab

- Linear regression
- LASSO
- ☐ Kernel ridge regression
- Random forest
- SVMs
- Neural networks

]

A many-body atomic environment descriptor: bispectrum coefficients

 $\rho(\mathbf{r}) = \sum_{n=1}^{\infty}$

Expand density in 4D spherical harmonics

$$\rho_i(\mathbf{r}) = \delta(\mathbf{r}) + \sum_{r_{ii'} < R_{cut}} f_c(r_{ii'}) w_{i'} \delta(\mathbf{r} - \mathbf{r}_{ii'})$$

<u>Gaussian approximation potential</u> (GAP)¹

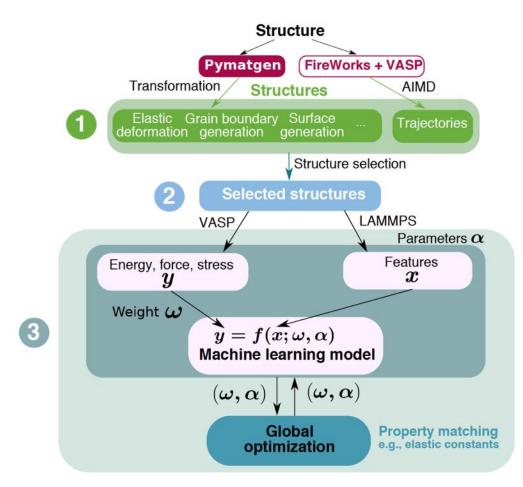
$$E_{\text{GAP}} = \sum_{n} \alpha_n G(\boldsymbol{B}, \boldsymbol{B}_n)$$

Gaussian process regression (nonparametric model)

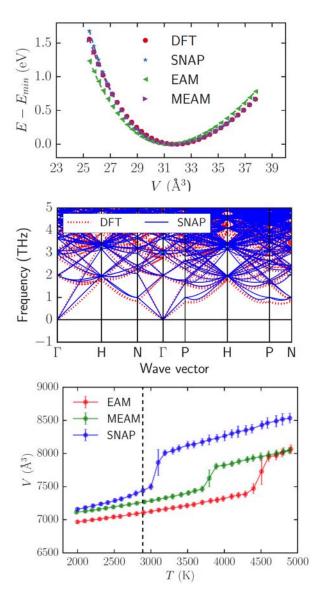
¹ Bartok et al. Phys. Rev. Lett. 2010, 104 (13), 136403. ² Thompson et al. J. Comput. Phys. 2015, 285, 316–330 DOI: 10.1016/j.jcp.2014.12.018.

ABIDEV 2019

Models: Quantum-accurate force-field for Mo

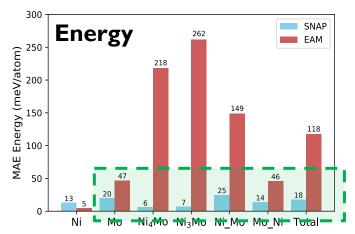


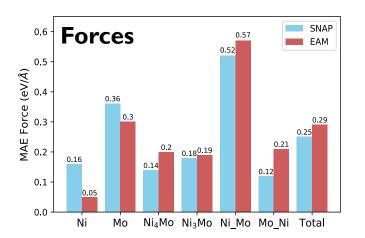
Chen et al. Phys. Rev. Mater. 2017, 1 (4), 43603 DOI: 10.1103/PhysRevMaterials.1.043603.

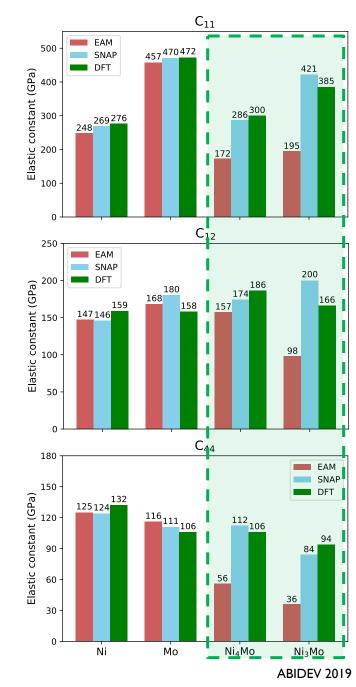


Ni-Mo SNAP performance

SNAP significantly outperforms in binary and bcc Mo for energy and elastic constants.



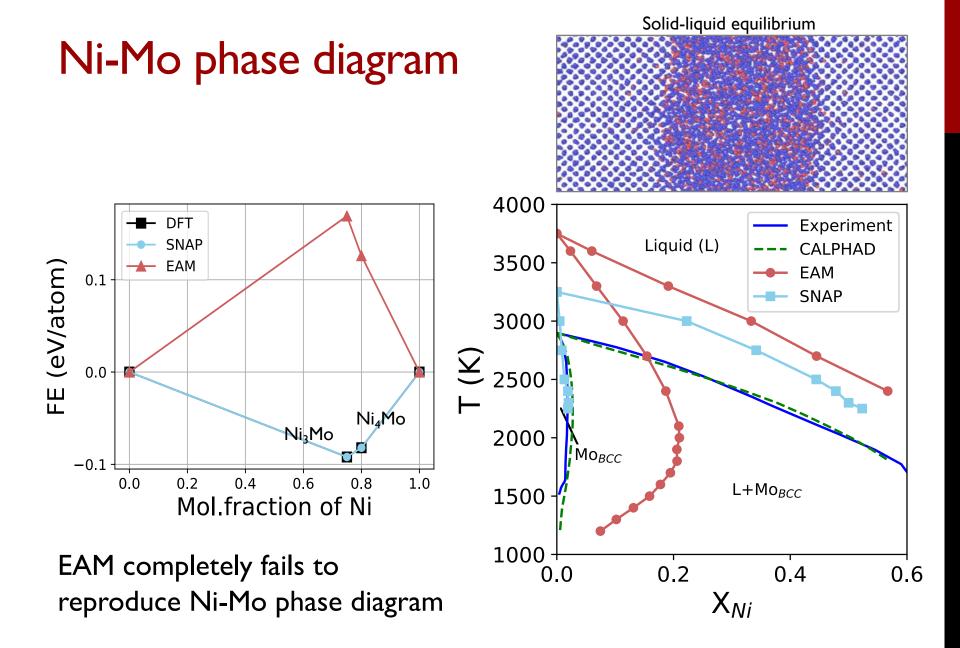




Elastic constants

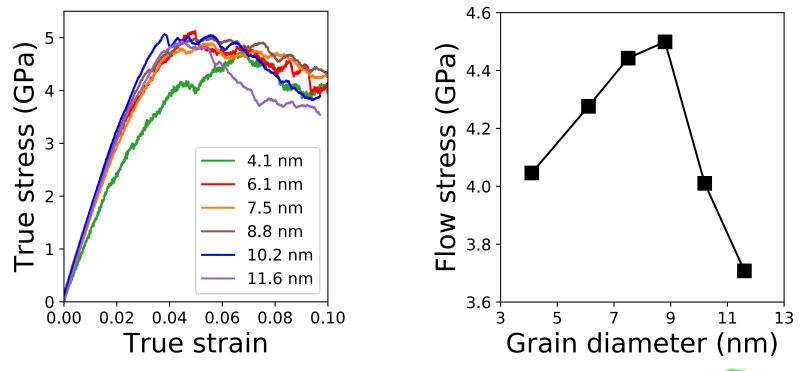
mater als

virtual·lab



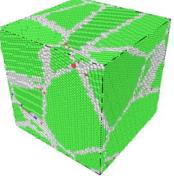
May 21, 2019

Application: Investigating Hall-Petch strengthening in Ni-Mo



- □ ~20,000 to ~455,000 atoms
- \Box Uniaxially strained with a strain rate of 5×10^8 s⁻¹
- □ SNAP reproduces the Hall-Petch relationship, consistent with experiment^[1].

[1] Hu et al. Nature, **2017**, 355, 1292



Conclusions

