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(SSSP) libraries]. The considerable difference
in the older potentials, even for the predefined
structures in this relatively simple test set, pro-
vides a compelling argument to use only themost
recent potential files of a given code.
In addition to the comparison with all-electron

codes, it is also interesting to assess how the
same PAW or pseudopotential recipes are im-
plemented in differentways.Whenboth theGPAW
and ABINIT codes use the GPAW 0.9 PAW set,

for example, they agree towithin aD of 0.6meVper
atom. A similar correspondence is found for the
Schlipf-Gygi 2015-01-24 optimized norm-conserving
Vanderbilt pseudopotentials (ONCVPSP) (0.3meV
per atom between Quantum ESPRESSO and
CASTEP), the Garrity-Bennett-Rabe-Vanderbilt
(GBRV) 1.4 ultrasoft pseudopotentials (0.3meVper
atombetweenQuantumESPRESSO andCASTEP)
and the GBRV 1.2 set (0.7 meV per atom between
PAW potentials in ABINIT and ultrasoft poten-

tials in Quantum ESPRESSO). In this case, too,
the small D values indicate a good agreement
between codes. This agreementmoreover encom-
passes varying degrees of numerical convergence,
differences in the numerical implementation of
the particular potentials, and computational dif-
ferences beyond the pseudization scheme, most
of which are expected to be of the same order of
magnitude or smaller than the differences among
all-electron codes (1 meV per atom at most).

Conclusions and outlook

Solid-state DFT codes have evolved considerably.
The change from small and personalized codes to
widespread general-purpose packages has pushed
developers to aim for the best possible precision.
Whereas past DFT-PBE literature on the lattice
parameter of silicon indicated a spread of 0.05 Å,
the most recent versions of the implementations
discussed here agree on this value within 0.01 Å
(Fig. 1 and tables S3 to S42). By comparing codes
on a more detailed level using the D gauge, we
have found the most recent methods to yield
nearly indistinguishable EOS, with the associ-
ated error bar comparable to that between dif-
ferent high-precision experiments. This underpins
the validity of recentDFTEOS results and confirms
that correctly converged calculations yield reliable
predictions. The implications are moreover rele-
vant throughout the multidisciplinary set of fields
that build upon DFT results, ranging from the
physical to the biological sciences.
In spite of the absence of one absolute refer-

ence code, we were able to improve and demon-
strate the reproducibility of DFT results by means
of a pairwise comparison of a wide range of codes
and methods. It is now possible to verify whether
any newly developed methodology can reach the
same precision described here, and new DFT
applications can be shown to have used a meth-
od and/or potentials that were screened in this
way. The data generated in this study serve as a
crucial enabler for such a reproducibility-driven
paradigm shift, and future updates of available
D values will be presented at http://molmod.
ugent.be/deltacodesdft. The reproducibility of
reported results also provides a sound basis for
further improvement to the accuracy of DFT,
particularly in the investigation of new DFT func-
tionals, or for the development of new computa-
tional approaches. This work might therefore
substantially accelerate methodological advances
in solid-state DFT.
Future work can examine the reproducibility

of different codes even further. Such work might
involve larger benchmark sets (describing differ-
ent atomic environments per element), other func-
tionals, an exhaustive comparison of different
relativistic treatments, and/or a more detailed ac-
count of computational differences (using data-
bases or scripts, for example). The precision of
band gaps, magnetic anisotropies, and other non-
EOS properties would also be of interest. How-
ever, the current investigation of EOS parameters
provides the most important pass-fail test of the
quality of different implementations of Kohn-
Sham theory. A method that is not able to reach
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Fig. 4. D values for comparisons between the most important DFT methods considered (in
millielectron volts per atom). Shown are comparisons of all-electron (AE), PAW, ultrasoft (USPP), and
norm-conserving pseudopotential (NCPP) results with all-electron results (methods are listed in alpha-
betical order in each category). The labels for each method stand for code, code/specification (AE), or
potential set/code (PAW, USPP, and NCPP) and are explained in full in tables S3 to S42.The color coding
illustrates the range from small (green) to large (red) D values.Themixed potential set SSSPwas added to
the ultrasoft category, in agreement with its prevalent potential type. Both the code settings and the DFT-
predicted EOS parameters behind these numbers are included in tables S3 to S42, and fig. S1 provides a
full D matrix for all methods mentioned in this article.
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Lejaeghere et al. Science, 2016, 351 (6280), aad3000.

Nitrides are an important class of optoelectronics (35), and the re-
ported synthesizability of highly metastable nitrides from reactive
nitrogen precursors (36, 37) suggests that there may be a broad
spectrum of promising and technologically relevant metastable ni-
trides awaiting discovery.

Although our study focuses on the metastability of inorganic
crystals, polymorphism and metastability in organic molecular solids
is of great technological relevance to pharmaceuticals, organic elec-
tronics, and protein folding (7). Our observation relating cohesive
energy to metastability could address a deep fundamental question
in organic molecular solids: Why do many molecular solids exhibit
numerous polymorphs within a small (~15°C) temperature range,
whereas inorganic solids often see >100°C differences between poly-
morph transition temperatures? The weak intermolecular bonds of
molecular solids yield cohesive energies of roughly −100 kJ/mol (12)
or −1 eV per molecule, about a third of the cohesion of the weakest
class of inorganic solids (iodides; Fig. 2B). This weak lattice cohesion
yields a correspondingly small energy scale of accessible metastability
(38). When this small energy scale of organic crystalline metastability
is coupledwith the rich structural diversity arising fromhigh conforma-
tional degrees of freedom duringmolecular packing (39), this inevitably
leads to awide range of accessible polymorphs over a small span of ther-
modynamic conditions.

Influence of composition
The space of metastable compounds hovers above an energy land-
scape of equilibrium phases. As chemical elements are added to a
thermodynamic system, the complexity of this energy landscape
grows. Figure 2A shows an example calculated energy landscape
for the ternary Fe-Al-O system, plotted as a convex hull of forma-
tion energies referenced to the elemental standard states (see section
S1.2 for discussion). We anticipate the thermodynamic metastability
of a phase to be different when it is competing against a polymorph—
a stable phase of the same composition (Fig. 2A, red stars)—or against
a phase-separated state—multiple phases of different compositions
(Fig. 2A, purple triangles). In Fig. 2B, we explore this hypothesis by
constructing probability distributions of metastability for allotropes,
binaries, ternaries, quaternaries, and pentanaries and beyond, grouped
by whether the competing equilibrium phase is a polymorph (shaded
light) or phase-separated (shaded dark). The relative areas of the shaded
regions are proportional to the ratio of entries within each composition.

Figure 2B demonstrates that the more elements present in a
metastable compound, the more likely that its competing equilib-
rium state is phase-separated rather than polymorphic, and that in
general, these phase-separating compounds tend to be more meta-
stable than polymorphs. The increased probability for phase sepa-
ration with increasing number of elements results from a higher
likelihood of low-energy decomposition products to exist in a broader
chemical space. However, even though this brings about greater ther-
modynamic risk for phase separation, long-range chemical separa-
tion is diffusion-limited, which can be a kinetic barrier that enables
the persistence of highly metastable (>70 meV/atom) multinary
compounds. Indeed, there are emerging examples that the formation
of low-dimensional crystals from multicomponent precursors under
diffusion-limited conditions can result in novel crystalline phases
that are metastable with respect to phase separation (4, 40–42). In
contrast, polymorphic phase transformations occur under constant local
composition and thus lack this kinetic barrier of chemical separation,
which may rationalize why the energy scale of metastability for

Fig. 1. Influence of chemistry on thermodynamic scale of metastability.
(A) Cumulative distribution functions of crystalline metastability for the most-represented
chemistries in the Materials Project. Manual investigation reveals that the 20% highest-
energy structures in the ICSD do not correspond to observed, crystalline polymorphs.
(B) Bivariate sample density maps of metastability versus cohesive energy for group VI
compounds. Chemistries with higher electronegativities, c, exhibit stronger bonds, re-
sulting in greater median cohesive energies and higher accessible crystalline meta-
stabilities. (C) Energy scale of metastability for various chemistries, ordered vertically
by the median cohesive energy. Left vertex, median metastability; right vertex, 90th
percentile. Within a periodic group, greater lattice cohesivity yields greater crystalline
metastability, as strong bonds can lock more metastable crystal structures.
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or meV/atom); 10 meV/atom corresponds to about 1 kJ/mol-
atom.

III. RESULTS

Figure 2 plots the experimental reaction energies as a
function of the computed reaction energies. All reactions
involve binary oxides to ternary oxides and have been chosen
as presented in Sec. II. The error bars indicate the experimental
error on the reaction energy. The data points follow roughly
the diagonal and no computed reaction energy deviates from
the experimental data by more than 150 meV/atom. Figure 2
does not show any systematic increase in the DFT error with
larger reaction energies. This justifies our focus in this study
on absolute and not relative errors.

In Fig. 3, we plot a histogram of the difference between
the DFT and experimental reaction energies. GGA + U un-
derestimates and overestimates the energy of reaction with the
same frequency, and the mean difference between computed
and experimental energies is 9.6 meV/atom. The root-mean-
square (rms) deviation of the computed energies with respect
to experiments is 34.4 meV/atom. Both the mean and rms are
very different from the results obtained by Lany on reaction
energies from the elements.52 Using pure GGA, Lany found
that elemental formation energies are underestimated by GGA
with a much larger rms of 240 meV/atom. Our results are
closer to experiments because of the greater accuracy of DFT
when comparing chemically similar compounds such as binary
and ternary oxides due to errors cancellation.40 We should note
that even using elemental energies that are fitted to minimize
the error versus experiment in a large set of reactions, Lany
reports that the error is still 70 meV/atom and much larger
than what we find for the relevant reaction energies. The
rms we found is consistent with the error of 3 kJ/mol-atom
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FIG. 2. (Color online) Experimental reaction energy as function
of the computed reaction energy (in meV/atom). The error bar
indicates the experimental error. As the reaction energies are typically
negative, the graph actually plots the negative of the reaction energy.

FIG. 3. (Color online) Histogram of the difference between
computed (!E

comp
0 K ) and experimental (!E

expt
0 K ) energies of reaction

(in meV/atom).

(30 meV/atom) for reaction energies from the binaries in the
limited set of perovskites reported by Martinez et al.29

Very often, instead of the exact reaction energy, one is
interested in knowing if a ternary compound is stable enough
to form with respect to the binaries. This is typically the case
when a new ternary oxide phase is proposed and tested for
stability versus the competing binary phases.18 From the 131
compounds for which reaction energies are negative according
to experiments, all but two (Al2SiO5 and CeAlO3) are also
negative according to computations. This success in predicting
stability versus binary oxides of known ternary oxides can
be related to the very large magnitude of reaction energies
from binary to ternary oxides compared to the typical errors
observed (rms of 34 meV/atom). Indeed, for the vast majority
of the reactions (109 among 131), the experimental reaction en-
ergies are larger than 50 meV/atom. It is unlikely then that the
DFT error would be large enough to offset this large reaction
energy and make a stable compound unstable versus the binary
oxides.

The histogram in Fig. 3 shows several reaction energies
with significant errors. Failures and successes of DFT are often
known to be chemistry dependent, and we present the effect of
the chemistry on the DFT error by plotting, in Fig. 4, a matrix
of absolute reaction energies errors. The x axis represents the
oxides of element A and the y axis the oxide of element B.
Each element in the matrix corresponds to an A-B-O chemical
system. When several reaction energies are available in a
chemical systems (i.e., several ternary compounds are present),
we plotted the maximum absolute error energy in this system.
The matrix is symmetric as A-B-O is equivalent to B-A-O.
The elements are sorted by their Mendeleev number53 so
that important chemical classes (e.g., alkalis or transition
metals) are grouped together. The first row and column in
the matrix indicate the mean of the difference computed
experimental for one given element across all ternary oxide
chemistries.

It is remarkable that no systematically larger error is present
for elements with partially filled d orbitals (e.g., Fe, Mn, Co, or
Ni), which indicates that the use of a Hubbard U is sufficient to
compensate the error associated with the localized d orbitals.
On the other hand, elements containing f electrons such as

155208-4

Properties
The JSON document for each entry contains an organized list of sub-entries that describes the properties
of each surface in detail. Each sub-entry contains information such as the Miller index, surface energy
and the fraction of the Wulff shape’s surface area occupied by this facet. For each Miller index, the lowest
surface energy termination, including among different reconstructions investigated where applicable,
is provided in each sub-entry. The slab structure used to model the surface is available as a string in the
JSON document in the format of a Crystallographic Information File (cif), which can also be downloaded
via the Materials Project website and Crystalium web application. In addition, the weighted surface
energy (equation (2)), shape factor (equation (3)), and surface anisotropy (equation (4)) are given.
Table 2 provides a full description of all properties available in each entry as well as their corresponding
JSON key.

Technical Validation
The data was validated through an extensive comparison with surface energies from experiments and
other DFT studies in the literature. Due to limitations in the available literature, only the data on ground
state phases were compared.

Comparison to experimental measurements
Experimental determination of surface energy typically involves measuring the liquid surface tension and
solid-liquid interfacial energy of the material20 to estimate the solid surface energy at the melting
temperature, which is then extrapolated to 0 K under isotropic approximations. Surface energies for
individual crystal facets are rarely available experimentally. Figure 5 compares the weighted surface
energies of all crystals (equation (2)) to experimental values in the literature20,23,26–28. It should be noted
that we have adopted the latest experimental values available for comparison, i.e., values were obtained
from the 2016 review by Mills et al.27, followed by Keene28, and finally Niessen et al.26 and Miller and
Tyson20. A one-factor linear regression line γDFT ¼ γEXP þ c was fitted for the data points. The choice of
the one factor fit is motivated by the fact that standard broken bond models show that there is a direct
relationship between surface energies and cohesive energies, and previous studies have found no evidence
that DFT errors in the cohesive energy scale with the magnitude of the cohesive energy itself61.

We find that the DFT weighted surface energies are in excellent agreement with experimental values,
with an average underestimation of only 0.01 J m− 2 and a standard error of the estimate (SEE) of
0.27 J m− 2. The Pearson correlation coefficient r is 0.966. Crystals with surfaces that are well-known to
undergo significant reconstruction tend to have errors in weighted surface energies that are larger than
the SEE.

The differences between the calculated and experimental surface energies can be attributed to three
main factors. First, there are uncertainties in the experimental surface energies. The experimental values
derived by Miller and Tyson20 are extrapolations from extreme temperatures beyond the melting point.
The surface energy of Ge, Si62, Te63, and Se64 were determined at 77, 77, 432 and 313 K respectively while

Figure 5. Comparison to experimental surface energies. Plot of experimental versus calculated weighted
surface energies for ground-state elemental crystals. Structures known to reconstruct have blue data points
while square data points correspond to non-metals. Points that are within the standard error of the estimate
(± 0.27 J m− 2) lie in the white region.

www.nature.com/sdata/
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Phase stability Formation energies

Tran, et al. Sci. Data 2016, 3, 160080.

Sun, et al. Sci. Adv. 2016, 2 (11), e1600225.

and Strickman14,55. Other properties computed in this work are the index of elastic anisotropy56 and the
Poisson ratio in the isotropic approximation. The various derived properties are listed in Table 1,
including expressions relating these properties to the elements of the single-crystal elastic tensor. The
corresponding JSON keys and the datatypes are also listed in Table 1. The elastic tensor Cij is presented in
two ways in Table 1: i) in the standardized IEEE-format and ii) in the format corresponding to the
orientation of the crystal structure as defined in the poscar-key in Table 2.

Graphical representation of results
A graphical representation of our dataset is presented in Fig. 2, which shows a log-log plot of the VRH
averaged bulk modulus versus the VRH averaged shear modulus for all materials considered in this work.
The orientation of each arrow corresponds to the volume per atom (VPA) of that specific material. The
material with the minimum VPA in our dataset is assigned an arrow pointing at 12 o’clock (diamond)
and the arrows rotate anti-clockwise towards the materials with the maximum VPA in our dataset at
6 o’clock (barium). The angle of rotation from 12 o’clock to 6 o’clock is proportional to the normalized
VPA. The VPA is considered since it is known to correlate well with elastic properties such as bulk
modulus57 –59 . Indeed, Fig. 2 illustrates this apparent correlation. Specifically, diamond exhibits the
highest bulk and shear moduli of all materials in our database and it also has the smallest VPA among
those materials. The more elastically compliant materials in Fig. 2 show relatively higher values for the
VPA. The color coding in Fig. 2 represents the Poisson ratio in the isotropic approximation. Also, two
lines of constants KVRH/GVRH ratio are drawn. As described in the Introduction, this quantity, known as
Pugh’s ratio2, has been shown to correlate with ductility in crystalline compounds2,3 and is further related

Figure 2. Distribution of calculated volume per atom, Poisson ratio, bulk modulus and shear modulus. Vector
field-plot showing the distribution of the bulk and shear modulus, Poisson ratio and atomic volume for 1,181
metals, compounds and non-metals. Arrows pointing at 12 o’clock correspond to minimum volume-per-atom
and move anti-clockwise in the direction of maximum volume-per-atom, which is located at 6 o’clock. Bar
plots indicate the distribution of materials in terms of their shear and bulk moduli.

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150009 | DOI: 10.1038/sdata.2015.9 7
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de Jong et al. Sci. Data 2015, 2, 150009.

Hautier et al.  Phys. Rev. B 2012, 85, 155208.
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Reasonable ML

Deep learning

(AA’)0.5(BB’)0.5O3 perovskite
2 x 2 x 2 supercell, 

10 A and 10 B species 
= (10C2 x 8C4)2 ≈107
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occupations offive cations on the B lattice site of a cubic perovskite crys-
tal structure, which agreewell with experimental XRD pattern obtained
from the specimen sintered at 1500 °C (shown by the blue vs. red pat-
terns in Fig. 1(a)). The lattice constant (a) of the high-entropy perov-
skite phase formed at 1500 °C was measured to be 3.992 Å by XRD,
which is close to calculated value of 4.032 Å (with ~1% in difference)
from the rule ofmixture (i.e., the average lattice constant of five individ-
ual ABO3 perovskites).

Fig. 2 shows STEM annular bright-field (ABF) and high-angle
annular dark-field (HAADF) images of a single-phase
Sr(Zr0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3 (Composition #S1) specimen sintered
at 1500 °C, suggesting the compositional homogeneity at the nanoscale.
The STEM images shown in Fig. 2 are consistentwith the anticipated pe-
rovskite structure viewed along the [001] zone axis; the lattice parame-
ter awas measured to be 4.010 Å from STEM images, being close to the
XRD value of 3.992 Å. The insets in Fig. 2(c) and 2(d) are the averaged
images of STEM ABF and HAADF images (with an enlarged and colored
image of averaged HAADF image being shown in Supplementary Fig.
S14) [29–31], where the intensity reflects the Z (the atomic number of
the atoms) difference of species and is roughly proportional to Z1.7

[32,33]. The brightest spot in the HAADF image represents a column of
“B (Zr0.2Sn0.2Ti0.2Hf0.2Mn0.2)+O” atoms, while the adjacent, less bright,
spots represent a column of A (Sr) atoms. The ratio of themaximum in-
tensities of these two spots wasmeasured to be 1.32 from the averaged
HAADF image (Supplementary Fig. S14), which is close to the estimated
ratio of (634 + 34)/485 ≈ 1.38 (Supplementary Table S-II) with b5%
difference in the experimental and theoretical values. This again

supports the formation of a homogenous ABO3 solid solution without
significant A-B anti-site defects.

All together, we have synthesized and characterized 13 composi-
tions, including (i) two basic compositions #S0 and #B0, where we par-
tially substituted Ti of SrTiO3 and BaTiO3 with Zr, Sn, and Hf; (ii)
compositions #S1-#S5 and #B1-#B5, where we added a fifth compo-
nent (Mn, Ce, Y, Ge or Nb) to the B site in #S0 and #B0, and (iii) Compo-
sition #S0.5 B0.55 (discussed later). The specific compositions and key
findings are summarized in Table 1; additional XRD and SEM-EDXS re-
sults are documented in Supplementary Figs. S1–S13. Interestingly,
while both #S0 and #B0 (with four elements, Zr, Sn, Ti and Hf, of an
equal molar fraction of ¼ on the B site) did not form single solid-solu-
tion phase at the temperature range of 1300–1500 °C (Table 1; Supple-
mentary Figs. S1 and S7), adding a fifth element promoted the
formation of single solid-solution phases in five compositions: #S1:
Sr(Zr0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3 and #S5: Sr(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3

(i.e., adding Mn/Nb to #S0) at 1500 °C, as well as #B2:
Ba(Zr0.2Sn0.2Ti0.2Hf0.2Ce0.2)O3, #B3: Ba(Zr0.2Sn0.2Ti0.2Hf0.2Y0.2)O3 − x

and #B5: Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 (i.e., adding Ce/Y/Nb to #B0)
at 1300 °C (Fig. 3 and Table 1). This suggests these solid-solution
(high-entropy) perovskite phases (#S1, #S5, #B2, #B3 and #B5) to be
entropy stabilized, at least to some extent.

The compositional uniformity of these (high-entropy) multi-cation
perovskite solid solutions have been verified by EDXS compositional
maps shown in Fig. 3(b). The lattice constants measured by XRD all
agree well with those calculated from the rule of mixture (Supplemen-
tary Table-III). The experimental XRD patterns also agree well with

Fig. 2. Atomic-resolution STEM ABF and HAADF images of a representative high-entropy perovskite oxide, Sr(Zr0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3. (a, c) ABF and (b, d) HAADF images at (a, b) low
and (c, d) highmagnifications showing nanoscale compositional homogeneity and atomic structure. The [001] zone axis and twoperpendicular atomic planes (110) and (110) aremarked.
Insets are averaged STEM images.

118 S. Jiang et al. / Scripta Materialia 142 (2018) 116–120

Jiang et al. A New Class of 
High-Entropy Perovskite 
Oxides. Scripta Materialia
2018, 142, 116–120. 
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𝜙 are update functions approximated using 
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Full model architecture
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E: bonds attributes
V: atom attributes (basically Z)
u: state attributes 

Output a graph after each 
MEGNet block

Output a long vector for each 
structure

Output a single value for each 
structure

Atom number mapping to vector

Implementation is open source at https://github.com/materialsvirtuallab/megnet.

https://github.com/materialsvirtuallab/megnet


Performance on 130,462 QM9 molecules
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80%-10%-10% train-validation-test split

Schnet: Schutt et al. J. Chem. Phys. 148, 241722 (2018)
enn-s2s: Gilmer et al. Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

11/13 properties reached chemical accuracy
11/13 properties state-of-the-art

Chemical Accuracy
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Unified Free Energy Model
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Training data state:
U, H, G at 298 K 
U at 0K (U0)∅ = 𝑓(𝐸, 𝑇, 𝑃, 𝑆))

Failure in H and G due to lack of more 
pressure and entropy in training data. 



pressure (binary), and entropy (binary) as additional global
state attributes in u, that is, (0, 0, 0), (298, 0, 0), (298, 1, 0),
and (298, 1, 1) for U0, U, H, and G, respectively. Using the
same architecture, this combined free energy model achieves
an overall MAE of 0.010 eV for the four targets, which is
comparable to the results obtained using the separate MEGNet
models for each target.
In principle, the combined free energy model should be able

to predict free energies at any temperature given sufficient
training data. Indeed, the predicted U at 100 and 200 K
matches well with our DFT calculations (see Figure S3), even
though these data points were not included in the training
data. However, the predicted H and G at the same
temperatures show large deviations from the DFT results.
We hypothesize that this is due to the fact that only one
temperature data for these quantities exist in the training data
and that the addition of H and G data at multiple temperatures
into the training data would improve the performance of the
unified free energy MEGNet model.
Performance on Materials Project Crystals. Table 3

shows the comparison of the performance of the MEGNet

models against the SchNet36 and CGCNN models.9 The
convergence of formation energy model is shown in Figure S4.
We may observe that the MEGNet models outperform both

the SchNet and CGCNN models in the MAEs of the
formation energies Ef, band gap Eg, bulk modulus KVRH, and
shear modulus GVRH. It should be noted that these results
especially the prediction of Eg and the metal/nonmetal
classifiersare achieved over much diverse data sets than
previous works, and the prediction error in Ef, Eg, KVRH, and
GVRH is well within the DFT errors in these quantities.48−52

The MEGNet models, similar to the SchNet models, utilize
only one atomic attribute (atomic number) and one bond
attribute (spatial distance), while nine attributes were used in
the CGCNN model. We also found that transferring the
elemental embeddings from the Ef model, which was trained
on the largest data set, significantly accelerates the training and
improves the performance of the Eg, KVRH, and GVRH models.
For example, an independently trained model (without transfer
learning) for Eg has a higher MAE of 0.38 eV.
We note that the data set used in the development of the

CGCNN model is significantly smaller than that of MEGNet
or SchNet, despite all three models having obtained their data
from the Materials Project. The reason is that crystals with
warning tags or without band structures were excluded from
the CGCNN model training. Using this exclusion strategy and
a similar training data size, the MEGNet models for formation
energy and band gap have MAEs of 0.032 eV atom−1 and 0.35
eV, respectively. The accuracies for metal and nonmetal
classifiers are increased to 82.7 and 93.1%, respectively.
There are also nongraph-based crystal ML models such as

the JARVIS-ML model53 and the AFLOW-ML model.54 The
MAEs of the JARVIS-ML models53 for formation energy, band
gap, bulk moduli, and shear moduli are 0.12 eV atom−1, 0.32
eV, 10.5 GPa, and 9.5 GPa, respectively, while the MAEs of
AFLOW-ML models54 for band gap, bulk moduli, and shear
moduli are 0.35 eV, 8.68 GPa, and 10.62 GPa, respectively.
However, these ML models are developed with very different
data sets (e.g., the JARVIS-DFT database contains formation
energies, elastic constants, and band gaps for bulk and 2D
materials computed using different functionals) and are
therefore not directly comparable to the MEGNet, SchNet,
or CGCNN models, which are all trained using Materials
Project data.
Figure 3a,b provides a detailed analysis of the MEGNet

model performance on Ef. The parity plot (Figure 3a) shows
that the training and test data are similarly well-distributed, and
consistent model performance is achieved across the entire
range of Ef. We have performed a sensitivity analysis of our
MEGNet Ef model to various hyperparameters. Increasing the

Table 3. Comparison of the MAEs in the Formation Energy
Ef, Band Gap Eg, Bulk Modulus KVRH, Shear Modulus GVRH,
and Metal/Nonmetal Classification between MEGNet
Models and Prior Works on the Materials Project Data Seta

units MEGNet SchNet36 CGCNN9

elements 89 89 87
Ef eV atom−1 0.028± 0.000

(60 000)
0.035 (60
000)

0.039 (28
046)

Eg eV 0.33 ± 0.01(36
720)

0.388 (16
485)

KVRH log10 (GPa) 0.050 ± 0.002
(4664)

0.054
(2041)

GVRH log10 (GPa) 0.079 ± 0.003
(4664)

0.087
(2041)

metal
classifier

78.9% ± 1.2%
(55 391)

80% (28
046)

nonmetal
classifier

90.6% ± 0.7%
(55 391)

95% (28
046)

aThe number of structures in the training data is in parentheses. The
standard deviations in the MAEs for the MEGNet models over three
randomized training:validation:test splits are also provided.

Figure 3. Performance of MEGNet models on the Materials Project data set. (a) Parity plots for the formation energy of the training and test data
sets. (b) Plot of average MAE for each element against the number of training structures containing that element. (c) ROC curve for test data for
the MEGNet classifier trained to distinguish metals against nonmetals.
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Transfer learning for improved convergence and 
speeed
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Ef model
(60,000 data points)

Eg model
(36,000 data points)

ü MAE decreases from 
0.38 eV to 0.32 eV

ü Convergence speed x2
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Extracting chemistry from machine-learned 
models
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Sorted by Mendeleev number

t-SNE projection
Pearson 
correlation
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Why machine learning? (Part 2)

Many real-world materials problems are not related to 
bulk crystals.

May 21, 2019

Huang et al.  ACS Energy Lett. 2018, 3 (12), 2983–2988. Tang et al. Chem. Mater. 2018, 30 (1), 163–173. 

Electrode-electrolyte interfaces Catalysis Microstructure and segregation

Need linear-scaling with ab initio accuracy.
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General procedure

Sample a sufficiently 
large dataset

Describe local 
environment

Learn relationship 
between features and 

energy, force, etc. 

May 21, 2019 ABIDEV 2019

OQMD

Open databases

DIY

q Requirements
• Invariance to rotation, 

reflection, translation, 
and permutation

• Uniqueness
• Differentiability

q Examples:
• Coulomb matrix
• Symmetry functions
• Bispectrum
• Smooth overlap of

atomic positions
• Fragment descriptors
• …

q Linear regression
q LASSO
q Kernel ridge regression
q Random forest
q SVMs
q Neural networks
q ….



A many-body atomic environment descriptor: 
bispectrum coefficients
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of point masses (atoms) whose motion is tracked by integrating the classical equations of motion to obtain the positions 
and velocities of the atoms at a large number of timesteps. The forces on the atoms are specified by an interatomic po-
tential that defines the potential energy of the system as a function of the atom positions. Typical interatomic potentials 
are computationally inexpensive and capture the basic physics of electron-mediated atomic interactions of important classes 
of materials, such as molecular liquids and crystalline metals. Efficient MD codes running on commodity workstations are 
commonly used to simulate systems with N = 105–106 atoms, the scale at which many interesting physical and chemical 
phenomena emerge. Quantum molecular dynamics (QMD) is a much more computationally intensive method for solving a 
similar physics problem [3]. Instead of assuming a fixed interatomic potential, the forces on atoms are obtained by explicitly 
solving the quantum electronic structure of the valence electrons at each timestep. Because MD potentials are short-ranged, 
the computational complexity of MD generally scales as O (N), whereas QMD calculations require global self-consistent 
convergence of the electronic structure, whose computational cost is O (Nα

e ), where 2  < α < 3 and Ne is the number of 
electrons. For the same reasons, MD is amenable to spatial decomposition on parallel computers, while QMD calculations 
allow only limited parallelism.

As a result, while high accuracy QMD simulations have supplanted MD in the range N = 10–100 atoms, QMD is still 
intractable for N > 1000, even using the largest supercomputers. Conversely, typical MD potentials often exhibit behavior 
that is inconsistent with QMD simulations. This has led to great interest in the development of MD potentials that match 
the QMD results for small systems, but can still be scaled to the interesting regime N = 105–106 atoms [1,4,5]. These 
quantum-accurate potentials require many more floating point operations per atom compared to conventional potentials, 
but they are still short-ranged. So the computational cost remains O (N), but with a larger algorithm pre-factor.

In this paper, we present a new quantum-accurate potential called SNAP. It is designed to model the migration of 
screw dislocations in tantalum metal under shear loading, the fundamental process underlying plastic deformation in body-
centered cubic metals. In the following section we explain the mathematical structure of the potential and the way in which 
we fit the potential parameters to a database of quantum electronic structure calculations. We follow that with a brief de-
scription of the implementation of the SNAP potential in the LAMMPS code. We demonstrate that a previously unnoticed 
symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of 
magnitude. We then present results for the SNAP potential that we have developed for tantalum. We find that this new 
potential accurately reproduces a range of properties of solid and liquid tantalum. Unlike simpler potentials, it correctly 
matches quantum MD results for the screw dislocation core structure and minimum energy pathway for displacement of 
this structure, properties that were not included in the training database.

2. Mathematical formulation

2.1. Bispectrum components

The quantum mechanical principle of near-sightedness tells us that the electron density at a point is only weakly affected 
by atoms that are not near. This provides support for the common assumption that the energy of a configuration of atoms is 
dominated by contributions from clusters of atoms that are near to each other. It is reasonable then to seek out descriptors 
of local structure and build energy models based on these descriptors. Typically, this is done by identifying geometrical 
structures, such as pair distances and bond angles, or chemical structures, such as bonds. Interatomic potentials based 
on these approaches often produce useful qualitative models for different types of materials, but it can be difficult or 
impossible to adjust these potentials to accurately reproduce known properties of specific materials. Recently, Bartók et al. 
have studied several infinite classes of descriptors that are related to the density of neighbors in the spherically symmetric 
space centered on one atom [1,6,7]. They demonstrated that by adding descriptors of successively higher order, it was 
possible to systematically reduce the mismatch between the potential and the target data. A variant of the GAP formalism 
has been successfully used to develop several new potentials for tungsten [8]. One of these descriptors, the bispectrum of 
the neighbor density mapped on to the 3-sphere, forms the basis for their Gaussian Approximation Potential (GAP) [1]. We 
also use the bispectrum as the basis for our SNAP potential. We derive this bispectrum below, closely following the notation 
of Ref. [7].

The density of neighbor atoms around a central atom i at location r can be considered as a sum of δ-functions located 
in a three-dimensional space:

ρi(r) = δ(r) +
∑

rii′ < Rcut

fc(rii′)wi′δ(r − rii′) (1)

where rii′ is the vector joining the position of the central atom i to neighbor atom i′ . The wi′ coefficients are dimensionless 
weights that are chosen to distinguish atoms of different types, while the central atom is arbitrarily assigned a unit weight. 
The sum is over all atoms i′ within some cutoff distance Rcut . The switching function fc(r) ensures that the contribution 
of each neighbor atom goes smoothly to zero at Rcut . The angular part of this density function can be expanded in the 
familiar basis of spherical harmonic functions Y l

m(θ, φ), defined for l = 0, 1, 2 , . . . and m = − l, − l + 1, . . . , l − 1, l [9]. The 

1 Bartok et al. Phys. Rev. Lett. 2010, 104 (13), 136403.
2 Thompson et al. J. Comput. Phys. 2015, 285, 316–330 DOI: 
10.1016/j.jcp.2014.12.018.
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radial component is often expanded in a separate set of radial basis functions that multiply the spherical harmonics. Bartók 
et al. made a different choice, mapping the radial distance r on to a third polar angle θ0 defined by

θ0 = θmax
0

r
Rcut

(2)

The additional angle θ0 allows the set of points (θ, φ, r) in the 3D ball of possible neighbor positions to be mapped 
on to the set of points (θ, φ, θ0) that are a subset of the 3-sphere. Points south of the latitude θmax

0 are excluded. It is 
advantageous to use most of the 3-sphere, while still excluding the region near the south pole where the configurational 
space becomes highly compressed.

The natural basis for functions on the 3-sphere is formed by the 4D hyperspherical harmonics U j
m,m′ (θ0, θ, φ), defined 

for j = 0, 12 , 1, . . . and m, m′ = − j, − j + 1, . . . , j − 1, j [9]. These functions also happen to be the elements of the unitary 
transformation matrices for spherical harmonics under rotation by angle 2θ0 about the axis defined by (θ, φ). When the 
rotation is parameterized in terms of the three Euler angles, these functions are better known as D j

m,m′ (α, β, γ ), the Wigner 
D-functions, which form the representations of the SO(3) rotational group [10,9]. Dropping the atom index i, the neighbor 
density function can be expanded in the U j

m,m′ functions

ρ(r) =
∞∑

j=0, 1
2 ,...

j∑

m=− j

j∑

m′=− j

u j
m,m′ U

j
m,m′(θ0, θ,φ) (3)

where the expansion coefficients are given by the inner product of the neighbor density with the basis function. Because 
the neighbor density is a weighted sum of δ-functions, each expansion coefficient can be written as a sum over discrete 
values of the corresponding basis function,

u j
m,m′ = U j

m,m′(0,0,0) +
∑

rii′< Rcut

fc(rii′)wi U
j

m,m′(θ0, θ,φ) (4)

The expansion coefficients u j
m,m′ are complex-valued and they are not directly useful as descriptors, because they are not 

invariant under rotation of the polar coordinate frame. However, the following scalar triple products of expansion coefficients 
can be shown to be real-valued and invariant under rotation [7].

B j1, j2, j =
j1∑

m1,m′
1=− j1

j2∑

m2,m′
2=− j2

j∑

m,m′=− j

(
u j

m,m′
)∗

H
jmm′
j1m1m′

1
j2m2m′

2

u j1
m1,m′

1
u j2

m2,m′
2

(5)

The constants H
jmm′
j1m1m′

1
j2m2m′

2

are coupling coefficients, analogous to the Clebsch–Gordan coefficients for rotations on the 

2-sphere. These invariants are the components of the bispectrum. They characterize the strength of density correlations 
at three points on the 3-sphere. The lowest-order components describe the coarsest features of the density function, 
while higher-order components reflect finer detail. An analogous bispectrum can be defined on the 2-sphere in terms of 
the spherical harmonics. In this case, the components of the bispectrum are a superset of the second and third order 
bond-orientational order parameters developed by Steinhardt et al. [11]. These in turn are specific instances of the order 
parameters introduced in Landau’s theory of phase transitions [12].

The coupling coefficients are non-zero only for non-negative integer and half-integer values of j1, j2, and j satisfying 
the conditions ∥ j1 − j2∥ ≤ j ≤ j1 + j2 and j1 + j2 − j not half-integer [10]. In addition, B j1, j2, j is symmetric in j1 and j2. 
Hence the number of distinct non-zero bispectrum components with indices j1, j2, j not exceeding a positive integer J is 
( J + 1)3. Furthermore, it is proven in Appendix A that bispectrum components with reordered indices are related by the 
following identity:

B j1, j2, j

2 j + 1
= B j, j2, j1

2 j1 + 1
= B j1, j, j2

2 j2 + 1
. (6)

We can exploit this equivalence by further restricting j2 ≤ j1 ≤ j, in which case the number of distinct bispectrum 
components drops to ( J + 1)( J + 2)( J + 3

2 )/3, a three-fold reduction in the limit of large J .

2.2. SNAP potential energy function

Given the bispectrum components as descriptors of the neighborhood of each atom, it remains to express the potential 
energy of a configuration of N atoms in terms of these descriptors. We write the energy of the system containing N atoms 
with positions rN as the sum of a reference energy Eref and a local energy Elocal

E
(
rN)

= Eref
(
rN)

+ Elocal
(
rN)

. (7)
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2 )/3, a three-fold reduction in the limit of large J .

2.2. SNAP potential energy function

Given the bispectrum components as descriptors of the neighborhood of each atom, it remains to express the potential 
energy of a configuration of N atoms in terms of these descriptors. We write the energy of the system containing N atoms 
with positions rN as the sum of a reference energy Eref and a local energy Elocal

E
(
rN)

= Eref
(
rN)

+ Elocal
(
rN)

. (7)

• Map neighbors into unit sphere in 4D
• Expand density in 4D spherical harmonics

EGAP =
X

n

↵nG(B,Bn)
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Spectral neighbor analysis potential 
(SNAP)2

Gaussian process regression (nonparametric model)
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Models: Quantum-accurate force-field for Mo



Ni-Mo SNAP performance
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q SNAP significantly outperforms in binary and 
bcc Mo for energy and elastic constants.
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Ni-Mo phase diagram
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EAM completely fails to 
reproduce Ni-Mo phase diagram

Ni3Mo
Ni4Mo

Solid-liquid equilibrium



Application: Investigating Hall-Petch strengthening 
in Ni-Mo
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q ~20,000 to ~455,000 atoms
q Uniaxially strained with a strain rate of 5×108 s-1

q SNAP reproduces the Hall-Petch relationship, 
consistent with experiment[1].

[1]  Hu et al. Nature, 2017, 355, 1292



Conclusions

May 21, 2019

Large 
datasets + 
Machine 
Learning

"Instant" 
property 
prediction

Learn new 
chemistry

Access 
large 

length/long 
time scales

ABIDEV 2019


