## Calculation of $U$ for systems with several strongly correlated orbitals


R. Outerovitch and B. Amadon CEA, DAM, DIF, F-91297 Arpajon

Abidev 2019
$\Rightarrow$ Which orbital is correlated ? ( $d$ in TM and $f$ in lanthanides/actinides)

## Constrained Random Phase Approximation ${ }^{1}$

Three steps:

- Define the correlated orbital : PLO-Wannier
- Constrained Screening : $\epsilon$
- Calculation of $U=\left\langle w_{1} w_{2}\right| \epsilon^{-1} v\left|w_{3} w_{4}\right\rangle$


## Goal of the work

- Extension of the scheme to several orbitals ${ }^{2}$ (e.g. $\left.U^{f f}, U^{d d}, U^{d f}\right)$
- Interfacing cRPA routines ${ }^{3}$ with PLO-Wannier

1. F. Aryasetiawan et al., Phys. Rev. B 70, 195104 (2004)
2. P. Seth et al., Phys. Rev. Lett. 119, 056401 (2017)
3. B. Amadon et al., Phys. Rev. B 89, 125110 (2014)

## Model choice for Ce in ABINIT and single orbital cRPA

usepawu 1
lpawu 3
usedmft2 1
dmftbandi2 1
dmftbandf2 20

## Model choice for Ce in ABINIT with PLO-Wannier ${ }^{4}$ and 1 orbital

```
plowan_natom 1
plowan_iatom 1
plowan_bandi 1
plowan_bandf 20
plowan_nbl 1
plowan_lcalc 3
plowan_projcalc 7
plowan_realspace 1
plowan_nt 1
plowan_it 0 0 0
```


## Model choice for Ce <br> in ABINIT using <br> PLO-Wannier and several orbitals cRPA

```
plowan_natom 1
plowan_iatom 1
plowan_bandi 1
plowan_bandf 20
plowan_nbl 2
plowan_lcalc 2 3
plowan_projcalc 5 7
plowan_realspace 1
plowan_nt 1
plowan_it 0 0 0
```

4. PLO-Wannier implementation by A. Gerossier, see B. Amadon et al., Phys. Rev. B 91, 161103 (2015)

One orbital cRPA


Several orbitals cRPA


Removed transitions in Ce with $f$ orbital VS. $f$ and $d$ orbitals

## Definition of the interaction matrix

One orbital model : $[U]_{m_{1}, m_{2}, m_{1}, m_{2}}=\left\langle w_{m_{1}}^{\mathbf{R}_{1} l_{1}} w_{m_{2}}^{\mathbf{R}_{1} l_{1}}\right| W^{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)\left|w_{m_{1}}^{\mathbf{R}_{1} l_{1}} w_{m_{2}}^{\mathbf{R}_{1} l_{1}}\right\rangle$

Several orbital model : $[U]_{m_{1}, m_{2}, m_{1}, m_{2}}=\left\langle w_{m_{1}}^{\mathbf{R}_{1} l_{1}} w_{m_{2}}^{\mathbf{R}_{2} l_{2}}\right| W^{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)\left|w_{m_{1}}^{\mathbf{R}_{1} l_{1}} w_{m_{2}}^{\mathbf{R}_{2} l_{2}}\right\rangle$

$$
U=\frac{1}{\left(2 l_{1}+1\right)\left(2 l_{2}+1\right)} \sum_{m_{1}=-l_{1}}^{l_{1}} \sum_{m_{2}=-l_{2}}^{l_{2}} U_{m_{1}, m_{2}, m_{1}, m_{2}}
$$

## One orbital cRPA

- $l_{1}=l_{2} \Rightarrow$ only one $U$ is calculated
- in $\mathrm{Ce} \Rightarrow U^{f f}$


## Several orbital cRPA

- $l_{1} \neq l_{2} \Rightarrow$ one $U$ per combination
- in $\mathrm{Ce} \Rightarrow U^{f f}, U^{f d}, U^{d d}$

Results:

- Implementation has been done
- Results for one orbital calculation are recovered

Short term goal :

- Calculate $U$ between any couple of orbitals in a system ${ }^{5}$
- Test the importance of inter-orbital interaction


## In the future

Implementation of DFT $+U$ and DFT+DMFT with several orbitals
5. P. Seth et al., Phys. Rev. Lett. 119, 056401 (2017)

