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What can we do with first-principles simulations?
Predict material properties using just fundamental constants

Little input from user necessary to obtain reliable information

Solving the stationary Schrédinger equation (clamped nuclei):

AV = EV  or DFT

Transition Structure A Second Order Saddle Point / P red ICtI Ve
Transition .
Stucturo B v/ Accurate energies

Minimum for .y . .
Produci A v Equilibrium geometries
Minimum .

for Procuct B ~ Excited states

Second Orcér ~ Temperature

03 © “Valley-Ridge
Minimum for Reactant h Inflection Point ~ DefeCtS

X Scaling (typically N3)

Wealth of information that could be difficult to obtain
experimentally



The problem

Scale of interest
v’ Nanoscale (~ 10 — 100nm)
X DFT~1nm

Nanowires skyrmion in MnSi



The problem

Scale of interest
v’ Nanoscale (~ 10 — 100nm)
X DFT~1nm

end end

Thermoelectrics, polarons...

Nanowires

Non-equilibrium states
v Resistivity

v Charge diffusion
v/ Reaction yield

skyrmion in MnSi




The problem

Scale of interest
v’ Nanoscale (~ 10 — 100nm)

X DFT ~1nm

hot m = cold

end _ end
Thermoelectrics, polarons...

Disorder

v/ Domains

v Thermal

v/ Defects (polarons, impurities...

Nanowires

Non-equilibrium states
v Resistivity

v Charge diffusion
v/ Reaction yield

Fae

Ferroelectric domains in BiFeO3

skyrmion in MnSi



The problem

Scale of interest
v’ Nanoscale (~ 10 — 100nm)

X DFT ~1nm

+

hot cold
end _ end
Thermoelectrics, polarons...
Disorder
v/ Domains
v Thermal

v/ Defects (polarons, impurities...

Nanowires

Non-equilibrium states
v Resistivity

v Charge diffusion
v/ Reaction yield

Fae

Ferroelectric domains in BiFeO3

skyrmion in MnSi

» Perturbations/disorder are key elements in experiments.
» Room temperature is fundamental for applications.
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Can we reliably parameterize it?

Second-principles Density Functional Methods
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The total density is separated in reference and deformation
densities:
n(r) = no(¥) + on(r)

ng = reference density
on = deformation density
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Approximating the DFT energy
Our starting point is the DFT energy

_r, - d:"rd3r’—i-Exc[n]—|—Enn
|F — ’|

Eprr = Z o <"/} k‘ t+Vext [V

We want to write the energy in terms of the reference and
deformation densities.

n(7) = no(7) + on(r)

The only difficulty is the exchange-correlation energy that we
expand in terms of dn (see e. g. M. Elstner et al.,Phys. Rev. B, 58, 7260
(1998)):

dEx

= 43 1 62E><c
7| on(Md r+2// 5n(7)on(7)
ng

Exc[n] - Exc[n0]+/ 6”(_‘)
As in usual TB-DFT approximations, we cut at second-order

EDFT ~E= E(O) + E(l) + E(2)

5n(F)on(7)d>rd*r 4 - -

no

However, we group the terms in a different way to TB-DFT.
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Material simulations
allow for various approaches

q1!
(1!

First principles methods are atomistic with flexible detailed bonding

FP or TB-DFT Second-principles
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Based on atoms Based on materials
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atomic cores  full 1e energy  full 2e energy

lattice electron excitations
Atoms = FP = Materials = SP = Large-scale
Accurate properties do not require bond-breaking!

Precise, small, material-adapted basis — Wannier-like functions
I. Souza et al.,Phys. Rev. B, 65, 035109 (2001)
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Energy terms: E = £(9 1 E(1) + E() Reference
This term is the full DFT energy for the reference state:

no(F)nj(7")
E©) — ZO <¢0‘t+vext / / 0? 0?| d3rd3r’+EXC[n0]+E,,,,

No approximations
At difference with usual TB-DFT this term is very large and
contains most of the total energy. It can be made really accurate.

‘8c:0-9:-0: -0-°0-0°9- Eo(n, {d}) is the energy surface
BB B BB B® for the reference state
0....‘..‘ 6.. l.‘ It b tdb
S oy ¥ can be represente a
‘8.8:0.8- -0:8-0:90- : o rep Y
N . e o o high-quality model potential.

J. Wojdet et al., JPCM, 25, 305401
(2013)

The reference state is defined for
all geometries

This lattice Hamiltonian is implemented in Multibinit!
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Energy terms: E = E(© + £(1) + E() One electron

» Full DFT energy for ng
Reference » Force field

» Multibinit
E® contains differences in one-electron energies

EO =3 [ogc (ue] o) — ofs (0| o [u)]

Jjk
= ZDab’yab (Wannier basis, xa)
ab

51(7) = 3 Dasa (Ps(7)

~Yab takes the role of the hopping constant in TB
schemes.

Yab = / A s (P hoxs(7)

Only depends on difference density!

E(l)

E©

2
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where g is a screened electron-electron interaction operator.
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where g is a screened electron-electron interaction operator.
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Energy terms: E = E(© + E(1) + E®) Calculation

» Full DFT energy for ng
Reference » Force field
» Multibinit
One-electron » Depends only on difference density

v

Tight-binding like

Two-electron » Depends only on difference density

Screened mean-field interactions

v

» Accurate
» Fast

» Valid for all kind of systems (magnetic, metallic, ...)

E©

E(l)

E@

Bt [t #4811
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Electrostatics/Electron-lattice interactions
All interactions occur between localized objects:

At long-range (far-field regime) shape of
source density is unimportant
Multipolar expansion

~ and U contain electrostatic
(long-range) contributions
Hartree/electron-nucleus

Local dipoles:
» Atomic displacement — Z*

» Hybridizations — (xa|F|X5)

Potential approximated by field of point charges and dipoles
localized at the reference geometry

Model parameters — long and short range contributions.
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Geometry dependence - Forces
Geometry is involved by expanding v on the atomic positions:

z - - A —
Vab = Yo+ E [fab,)«u 0P + 0w 8abrv 0w + ]
Av

U,l should also depend on 67 — neglected
The forces are then obtained:

[_—_‘)\ = —ﬁAE = —ﬁ)\E(O) — Z Dabﬁ)\’yab‘
ab

Electronic contribution corrects the force field



Applications of SPDFT

NiO - Insulator with highly correlated electrons:
FM AF2
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Applications of SPDFT )

NiO - Insulator with h|ghly correlated electrons:

SCALE
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Z:ég Magnetic Properties
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§ 9 § .y neutron 1.4 -19.0
& & LDA+U 2.6 -17.5
% SP-Ni(3d) + O(2p) 33 176

EIectronlc/magnetic properties predicted at DFT level
2000 atoms single point 1 hour in 1 Desktop cpu (full diag)

2DEG at SrTiO3/LaAlO3 Interface

q=0.5 q=0.3

1x 1 xn STO cells + vacuum in z 3 J'\ 1op? i ]
Ve $— — — IR ]
SETUP i '-AOE . L /444
H -— — — 02y T T T 02y T T T
.......... i R RS
i b \FL
FP — M. Stengel, PRL, 106, 136803 (2011) W [

SPDFT captures doping and lattice screening!




Ferroelectric bubbles
SP can simulate ferroelectric bubble skyrmions in PbTiO3/SrTiO3

5
X positon (unit co)

El

% s 10 s
X poston untceh

» ~ 40000 atoms

» Tangential polarization to bubble
Makes bubbles chiral
Explains XCD signal

» Bubble shows non-trivial topology
Planes — same topological charge

S. Das et al.,Nature, 568, 368 (2019)
~ Pablo Garcfa-Ferndndez =~ garciapa@unicanes  SCALE-UP
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The implementation of SP-DFT: SCALE-UP

P. Garcia-Fernandez, J. Wojdet, J. Iiiiguez and J. Junquera
Phys. Rev. B, 93, 195137 (2016)

» Fully integrated electron+lattice models

» Single-points, Dynamics (isokinetic, Langevin), Montecarlo
» SCF with convergence acelerators

» TDDFT: Real-time density propagation, I:f(t) fields

» Fortran 90 code + python utilities and interface

» Parallelization: Hybrid scheme, MPI+OPENMP

» SCALE-UP python module: Running and analysis

» Model building suite: MODELMAKER

» Future: Spin-orbit, defects (surfaces, interfaces, impurities...)

» Future: Pure density-matrix implementation
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The connection between SCALE-UP and MULTIBINIT

SCALE-UP can be run as a library by other codes

i

» It can provide E©, EM1ER) or EO)LEM) LE(@)
» It has three main calls

@ scaleup_init
@® calculate_energy
© calculate_forces

Distribution SCALE-UP — Attendance to workshop
Rationale: Forming community, second-principles are not blackbox
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Model construction

Second Principles depend on First Principles to create models

FP-SP Interface
Very delicate process, we need:

» Accuracy: SP model needs to reproduce FP

> Lightweight: SP model needs to be efficient
» Robust: Necessary characteristics of model construction tool

@ Automated

@® Few and clean input parameters

© Systematically improvable models

@ Produces hopping, electron-lattice,
electron-electron-parameters

Currently we have a SCALE-UP - SIESTA - WANNIERIO Interface



Modelmaker
The first step to create a model is to create a FP training set

input
example

)

2= S+ 59 T ({0xD) + Y (Do Uabars & Dl lavarsr ) + 75

a’b’
Model Hamiltonian — capture FP physics

» Bands: Wannier Hamiltonian
> Electron-lattice terms: Change geometry on a supercell
» Electron-electron terms: Controlled perturbation of electrons
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Model Hamiltonian — capture FP physics
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The SIESTA-WANNIER9O interface...

Javier Junquera



Modelmaker

Next we need to determine the terms that form the model

input
example

SIESTA

Range?

1

Hopping
<r>
el-lat

el-el

-

» The input is just 4 distances that determine the range of
hopping, position, electron-lattice and electron-electron matrix
elements.

» The code then filters the created terms using symmetry

» Finally, modelmaker calls SCALE-UP to determine the
long-range corrections




Modelmaker

input
example

SIESTA

==
P
Hopping
<r>
el-lat
-
e €

el-el

Y

N

i N N
Training set P Satisfactory >
ng model? -

» The code determines iteratively "best n-terms” models

> It provides with tools to check accuracy of the model and
systematic error detection

> The user decides if model is good enough and how to improve




Summary

» Second-Principles DFT bridges the gap between first-principles and
model Hamiltonians

> The goal is getting closer to " Computational experiments”
P. Garcia-Fernandez et al.,PRB, 93, 195137 (2016)
J. Wojdet et al.,JPCM, 25, 305401 (2013)
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» Current applications show the accuracy and versatility of method
S. Das et al.,Nature, 568, 368 (2019)

» Their use requires still a lot of user input
Strong interactions with FP codes

Thank you for your attention!



