

Motivation Model and Implementation Open Questions

Implementing the Relaxed Core PAW Method into ABINIT

N. Brouwer, V. Recoules, M. Torrent

CEA, DAM, DIF, F91297 Arpajon, France

20.05.2019

Motivation

Model and Implementation

Motivatior

• Currently, the projector augmented wave method uses the frozen core approximation.

Motivation

Model and Implementation

- Currently, the projector augmented wave method uses the frozen core approximation.
- However in extreme conditions, like warm dense matter or high pressures, core energies are known to change considerably.

Motivation

Model and Implementation

Motivation

- Currently, the projector augmented wave method uses the frozen core approximation.
- However in extreme conditions, like warm dense matter or high pressures, core energies are known to change considerably.
- Especially under warm dense matter conditions, the cost of using all-electron codes is to high.

Motivation

Model and Implementation

Motivation

- Currently, the projector augmented wave method uses the frozen core approximation.
- However in extreme conditions, like warm dense matter or high pressures, core energies are known to change considerably.
- Especially under warm dense matter conditions, the cost of using all-electron codes is to high.
- Therefore an intermediate method is necessary.

Model and Implementation

Model and Implementation

Relaxed Core PAW

- Method proposed by Marsman and Kresse ^a
- General idea, relax cores in between SCF cycles:
 - Solve atomic problem with fixed (DFT) valence charge density to obtain new AE core density.
 - Calculate new core AE partial waves.
 - Calculate new PS partial waves, that remain dual to the original projectors.
 - Recalculate dependent parameters.

^aM. Marsman and G. Kresse, J. Chem. Phys. 125, 104101 (2006).

Motivation

Model and Implementation

Model and Implementation

Relaxed Core PAW

- Method proposed by Marsman and Kresse ^a
- General idea, relax cores in between SCF cycles:
 - Solve atomic problem with fixed (DFT) valence charge density to obtain new AE core density.
 - Calculate new core AE partial waves.
 - Calculate new PS partial waves, that remain dual to the original projectors.
 - Recalculate dependent parameters.

^aM. Marsman and G. Kresse, J. Chem. Phys. 125, 104101 (2006).

General Considerations

• We try to avoid major changes of the main ABINIT code.

Motivation

Model and Implementation

Model and Implementation

Relaxed Core PAW

- Method proposed by Marsman and Kresse ^a
- General idea, relax cores in between SCF cycles:
 - Solve atomic problem with fixed (DFT) valence charge density to obtain new AE core density.
 - Calculate new core AE partial waves.
 - Calculate new PS partial waves, that remain dual to the original projectors.
 - Recalculate dependent parameters.

^aM. Marsman and G. Kresse, J. Chem. Phys. 125, 104101 (2006).

General Considerations

- We try to avoid major changes of the main ABINIT code.
- For now, we will use RCPAW only for one atom, defined as a different atom type.

Motivation

Model and Implementation

Model and Implementation

Relaxed Core PAW

- Method proposed by Marsman and Kresse ^a
- General idea, relax cores in between SCF cycles:
 - Solve atomic problem with fixed (DFT) valence charge density to obtain new AE core density.
 - Calculate new core AE partial waves.
 - Calculate new PS partial waves, that remain dual to the original projectors.
 - Recalculate dependent parameters.

^aM. Marsman and G. Kresse, J. Chem. Phys. 125, 104101 (2006).

General Considerations

- We try to avoid major changes of the main ABINIT code.
- For now, we will use RCPAW only for one atom, defined as a different atom type.
- We will modify the pawtab data structure in an unobtrusive way (e. g. pointers) to allow for changes.

Model and Implementation

Motivation

Model and Implementation

Open Questions

Algorithm

• Enter relax core routine during SCF cycle, after valence densities have been updated.

Model and Implementation

- Enter relax core routine during SCF cycle, after valence densities have been updated.
- Adapt ATOMPAW functions to solve atomic problem with fixed (radially averaged) valence density (possibly used as library).

Model and Implementation

- Enter relax core routine during SCF cycle, after valence densities have been updated.
- Adapt ATOMPAW functions to solve atomic problem with fixed (radially averaged) valence density (possibly used as library).
- Reuse pseudoization parameters from input core wave function (modifications might be necessary).

Model and Implementation

- Enter relax core routine during SCF cycle, after valence densities have been updated.
- Adapt ATOMPAW functions to solve atomic problem with fixed (radially averaged) valence density (possibly used as library).
- Reuse pseudoization parameters from input core wave function (modifications might be necessary).
- Use Vanderbilt method to allow for unmodified projectors.

Model and Implementation

- Enter relax core routine during SCF cycle, after valence densities have been updated.
- Adapt ATOMPAW functions to solve atomic problem with fixed (radially averaged) valence density (possibly used as library).
- Reuse pseudoization parameters from input core wave function (modifications might be necessary).
- Use Vanderbilt method to allow for unmodified projectors.
- Recalculate D_{ij} and Q_{ij} .

Model and Implementation

- Enter relax core routine during SCF cycle, after valence densities have been updated.
- Adapt ATOMPAW functions to solve atomic problem with fixed (radially averaged) valence density (possibly used as library).
- Reuse pseudoization parameters from input core wave function (modifications might be necessary).
- Use Vanderbilt method to allow for unmodified projectors.
- Recalculate D_{ij} and Q_{ij} .
- Introduce suitable mixing.

Model and Implementation

- Enter relax core routine during SCF cycle, after valence densities have been updated.
- Adapt ATOMPAW functions to solve atomic problem with fixed (radially averaged) valence density (possibly used as library).
- Reuse pseudoization parameters from input core wave function (modifications might be necessary).
- Use Vanderbilt method to allow for unmodified projectors.
- Recalculate D_{ij} and Q_{ij}.
- Introduce suitable mixing.
- Resume SCF cycle.

Open Questions

ATOMPAW as a Library

• Pro:

- Motivation
- Model and Implementation

Open Questions

- Reuse of already existing code.
- Contra:

Open Questions

Open Questions

ATOMPAW as a Library

- Pro:
 - Reuse of already existing code.
 - Is already a fallback anyway.
- Contra:

Motivation

Model and Implementation

Open Questions

Open Questions

ATOMPAW as a Library

• Pro:

- Reuse of already existing code.
- Is already a fallback anyway.
- Profit from future developments of ATOMPAW in ABINIT.

• Contra:

Notivation

Model and Implementation

Open Questions

Open Questions

ATOMPAW as a Library

- Pro:
 - Reuse of already existing code.
 - Is already a fallback anyway.
 - Profit from future developments of ATOMPAW in ABINIT.
- Contra:
 - ATOMPAW library interface not fully coded yet.

Activation

Model and Implementation

Open Questions

Open Questions

ATOMPAW as a Library

- Pro:
 - Reuse of already existing code.
 - Is already a fallback anyway.
 - Profit from future developments of ATOMPAW in ABINIT.
- Contra:
 - ATOMPAW library interface not fully coded yet.
 - Use as library leads to more dependencies.

Motivation

Model and Implementation

Open Questions

Open Questions

ATOMPAW as a Library

- Pro:
 - Reuse of already existing code.
 - Is already a fallback anyway.
 - Profit from future developments of ATOMPAW in ABINIT.

• Contra:

- ATOMPAW library interface not fully coded yet.
- Use as library leads to more dependencies.

More than one relaxed atom?

• The current implementation plan calls for a separate atom type for each atom that should be relaxed.

Motivation

Model and Implementation

Open Questions

Open Questions

ATOMPAW as a Library

- Pro:
 - Reuse of already existing code.
 - Is already a fallback anyway.
 - Profit from future developments of ATOMPAW in ABINIT.
- Contra:
 - ATOMPAW library interface not fully coded yet.
 - Use as library leads to more dependencies.

More than one relaxed atom?

- The current implementation plan calls for a separate atom type for each atom that should be relaxed.
- For many applications one relaxed atom might be sufficient.

Motivation

Model and Implementation

Open Questions

Open Questions

ATOMPAW as a Library

- Pro:
 - Reuse of already existing code.
 - Is already a fallback anyway.
 - Profit from future developments of ATOMPAW in ABINIT.
- Contra:
 - ATOMPAW library interface not fully coded yet.
 - Use as library leads to more dependencies.

More than one relaxed atom?

- The current implementation plan calls for a separate atom type for each atom that should be relaxed.
- For many applications one relaxed atom might be sufficient.
- However, if all atoms should be relaxed, a more efficient approach might be necessary, e. g. separate again between per atom and per atom-type data.

Motivation

Model and Implementation

Open Questions

Open Questions

ATOMPAW as a Library

- Pro:
 - Reuse of already existing code.
 - Is already a fallback anyway.
 - Profit from future developments of ATOMPAW in ABINIT.
- Contra:
 - ATOMPAW library interface not fully coded yet.
 - Use as library leads to more dependencies.

More than one relaxed atom?

- The current implementation plan calls for a separate atom type for each atom that should be relaxed.
- For many applications one relaxed atom might be sufficient.
- However, if all atoms should be relaxed, a more efficient approach might be necessary, e. g. separate again between per atom and per atom-type data.
- Downside: More coding and more potential for unexpected interactions with the rest of ABINIT.