

Introduction

Overview

Theory

Kubo-Greenwood Formula

Spin-Orbit Coupling Dirac Relativistic Atomic Calculation

Implementation

Optical conductivity Xanes

Results

Optical Conductivity in Gold

XANES of Copper

Conclusions

Improving Optical and X-Ray Spectroscopy in ABINIT

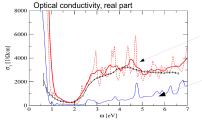
N. Brouwer, V. Recoules, M. Torrent

CEA, DAM, DIF, F91297 Arpajon, France

21.05.2019

Introduction

- Overview
- Challenges
- Theory
- Kubo-Greenwood Formula
- Spin-Orbit Coupling Dirac Relativistic Atomic Calculation
- Implementation
- Optical conductivity Xanes
- Results
- Optical Conductivity in Gold
- XANES of Copper
- Conclusions


Overview

- Challenges
- Theory:
 - Kubo-Greenwood formula
 - Spin-Orbit Coupling
 - Relativistic core wave functions
- Implementation:
 - Optical spectroscopy
 - XANES
- Results
- Conclusions and Outlook

Introduction

- Overview
- Challenges
- Theory
- Kubo-Greenwood Formula
- Spin-Orbit Coupling Dirac Relativistic Atomic Calculation
- Implementation
- Optical conductivity Xanes
- Results
- Optical Conductivity in Gold
- XANES of Copper
- Conclusions

Not the correct shape

Computation with SO were wrong even if calculation were running.

Optical Conductivity

Introduction Challenges

- Optical spectra of simple metals, e.g. aluminium can reproduced well.
- Heavier elements, e.g. gold, still pose a challenge.
- Inclusion of spin-orbit coupling is important.
- But has been problematic in the past.

¹Abinit user meeting 2013

Introduction

Overview

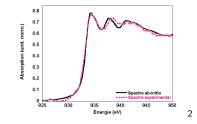
Challenges

Theory

Kubo-Greenwood Formula

Spin-Orbit Coupling Dirac Relativistic Atomic Calculation

Implementation


Optical conductivity Xanes

Results

Optical Conductivity in Gold

XANES of Copper

Conclusions

XANES

- Near edge structures of single absorption edges can already be reproduced by ABINIT.
- As usual in DFT, the total energy has to be corrected.
- Spin orbit splitting of e. g. copper L2/3 edge could not be predicted in ABINIT.

²Thesis N. Jourdain

Theory Kubo-Greenwood Formula

Introduction

Overview

Challenge

Theory

Kubo-Greenwood Formula

Spin-Orbit Coupling Dirac Relativistic Atomic Calculation

Implementation

Optical conductivity Xanes

Results

Optical Conductivity in Gold

XANES of Copper

Conclusions

Optical Conductivity

The real part of the optical conductivity can be calculated using the Kubo-Greenwood formula:

$$\sigma_1(\boldsymbol{k},\omega) = \frac{2\pi}{3\omega\Omega} \sum_{j=1}^{n_b} \sum_{i=1}^{n_b} \left(f(\epsilon_{i,\boldsymbol{k}}) - f(\epsilon_{j,\boldsymbol{k}}) \right) \left| \boldsymbol{M} \right|^2 \delta(\epsilon_{j,\boldsymbol{k}} - \epsilon_{i,\boldsymbol{k}} - \omega)$$

Matrix Element

Without spin orbit coupling, the matrix element has the following form:

$$\boldsymbol{M} = \langle \psi_{j,\boldsymbol{k}} | \boldsymbol{v} | \psi_{i,\boldsymbol{k}} \rangle = \langle \psi_{j,\boldsymbol{k}} | \frac{i}{\hbar} [\boldsymbol{H}, \boldsymbol{r}] | \psi_{i,\boldsymbol{k}} \rangle = \langle \psi_{j,\boldsymbol{k}} | - i\hbar \nabla | \psi_{i,\boldsymbol{k}} \rangle$$

Introduction

Overview

Challenges

Theory

Kubo-Greenwood Formula

Spin-Orbit Coupling

Dirac Relativistic Atomic Calculation

Implementation

Optical conductivity Xanes

Results

Optical Conductivity in

XANES of Copper

Conclusions

Theory Spin-Orbit Coupling

Spin-Orbit Coupling

With increasing charge of the ion, relativistic effects have to be considered. One important effect is the so-called spin-orbit coupling.

Hamiltonian

Spin-orbit coupling is included in the Hamiltonian:

$$H_{\rm SO} = rac{1}{2m^2c^2}rac{1}{r}rac{{
m d}V(r)}{{
m d}r}m{L}\cdotm{S}$$

Kubo-Greewood Formula

This also modifies the matrix element in the Kubo-Greenwood formula for the optical conductivity:

$$M = \langle \psi_{j,\boldsymbol{k}} | \boldsymbol{v} | \psi_{i,\boldsymbol{k}} \rangle = \langle \psi_{j,\boldsymbol{k}} | - i\hbar \nabla + \frac{\hbar}{4m^2c^2} \boldsymbol{\sigma} \times \frac{\boldsymbol{r}}{r} \frac{\mathrm{d}V(r)}{\mathrm{d}r} | \psi_{i,\boldsymbol{k}} \rangle$$

cea

Introduction

Overview

Challenges

Theory

Kubo-Greenwood Formula

Spin-Orbit Coupling

Dirac Relativistic Atomic Calculation

Implementation

Optical conductivity Xanes

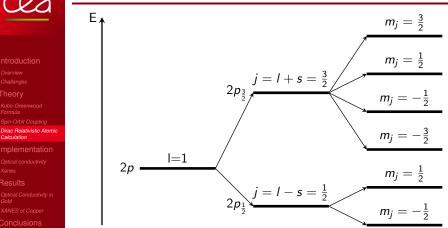
Results

Optical Conductivity in Gold

XANES of Copper

Conclusions

Theory Dirac Relativistic Atomic Calculation


Solution Provided by New Version of Atompaw

$$\Psi_{njm_j}^{l} = \begin{pmatrix} g_{nj}(r)\varphi_{jm_j}^{l} \\ if_{nj}(r)\frac{\hat{\sigma}\cdot\mathbf{r}}{r}\varphi_{jm_j}^{l} \end{pmatrix}$$

Angular Part

$$\begin{split} \kappa &< 0 \Leftrightarrow j = l + \frac{1}{2}: \\ \varphi_{jm_{j}}^{l} = \sqrt{\frac{l + \frac{1}{2} + m_{j}}{2l + 1}} Y_{l}^{m_{j} - \frac{1}{2}} \chi_{\frac{1}{2}} + \sqrt{\frac{l + \frac{1}{2} - m_{j}}{2l + 1}} Y_{l}^{m_{j} + \frac{1}{2}} \chi_{-\frac{1}{2}} \\ \kappa &> 0 \Leftrightarrow j = l - \frac{1}{2}: \\ \varphi_{jm_{j}}^{l} &= \sqrt{\frac{l + \frac{1}{2} - m_{j}}{2l + 1}} Y_{l}^{m_{j} - \frac{1}{2}} \chi_{\frac{1}{2}} - \sqrt{\frac{l + \frac{1}{2} + m_{j}}{2l + 1}} Y_{l}^{m_{j} + \frac{1}{2}} \chi_{-\frac{1}{2}} \end{split}$$

Level scheme including spin-orbit coupling

Statistics are treated correctly by considering all valid m_j of each level (actual m_j energy split occurs only with external magnetic field or when considering hyper fine structure).

Implementation Optical conductivity

Fixing prtnabla 1 plus nspinor 2

Optical conductivity

2,

Corrected wrong ordering in 42_libpaw/pawcprj.F90:pawcprj_mpi_allgather in case of nspinor 2 and rank_ordered=false:

```
do iproc=1,nproc
     do jj=1,n2dim/nsp
       do ispinor=1,nsp
         ibuf=ispinor+(iproc-1)*nsp+(ij-1)*nproc*nsp
         do iat=1.natom
            nn=nlmn(iat)
           cpri_gat(iat, ibuf)%cp(:, 1; nn) = buffer_cpgr_all(:, 1, ipck+1; ipck+nn)
            if (ncpgr/=0) cprj_gat(iat,ibuf)%dcp(:,1:ncpgr,1:nn)=&
             buffer_cpgr_all(:.2:1+ncpgr.ipck+1:ipck+nn)
            ipck=ipck+nn
         end do
       end do
     end do
   end do
```

NetCDF Support

• prtnabla 1 will now produce a NetCDF file if iomode 3 is chosen.

Implementation Optical conductivity

Introduction

Overview

Challenges

Theory

Kubo-Greenwood Formula

Spin-Orbit Coupling Dirac Relativistic Atomic Calculation

Implementation

Optical conductivity

Xanes

Results

Optical Conductivity in Gold

XANES of Copper

Conclusions

SOC velocity matrix element

- Functions: 65_paw/m_paw_opitcs.F90:optics_paw_soc and optics_paw_soc_init
- Current keyword: useria 5121986 (will be changed to prtnabla 4 for release)
- Will calculate SOC term in the velocity operator.
- More memory intensive for high number of atoms, since the potential varies per atom and not only per atom type.

Implementation Xanes

Introduction

Overview

Challenges

Theory

Kubo-Greenwood Formula

Spin-Orbit Coupling Dirac Relativistic Atomic Calculation

Implementation

Optical conductivity

Xanes

Results

Optical Conductivity in Gold

XANES of Copper

Conclusions

ATOMPAW data transfer

- Added output for both radial wave functions generated by the dirac-relativistic generator.
- Output as .abinit or .xml possible.
- Files indicate their generator type as well as the variable κ .
- Abinit can read both file types, support for dirac-relativistic core wave functions needs to be activated (currently useria 29091988, will be prtnabla 5).

ntroduction

Overview

Challenges

Theory

Kubo-Greenwood Formula

Spin-Orbit Coupling Dirac Relativistic Atomic Calculation

Implementation

Optical conductivity

Xanes

Results

Optical Conductivity in Gold

XANES of Copper

Conclusions

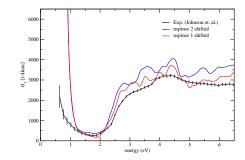
Implementation Xanes

Implementation of the angular solution

- ABINIT already calculates angular matrix element for the nabla operator using spherical harmonics.
- To take of advantage of that, the indlmn_core data structure was modified to represent the structure of the angular solution.
- After that, the implementation was rather straight forward.
- $\bullet\,$ Output with NetCDF is now also possible with prtnabla 3 $+\,$ iomode 3

Conducti

- Can read the new NetCDF files.
- Can use MPI to parallelize on bands (just use mpirun -np n).
- XANES mode now supports variable width smearing.
- Small fixes to ensure nspinor 2 compatibility.


Results Optical Conductivity in Gold

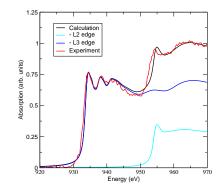
Introduction

- Overview
- Challenges

Theory

- Kubo-Greenwood Formula
- Spin-Orbit Coupling Dirac Relativistic Atomic Calculation
- Implementation
- Optical conductivity Xanes
- Results
- Optical Conductivity in Gold
- XANES of Copper
- Conclusions

Optical Conductivity of Gold


- Calculation with nspinor 2 now give more reasonable results.
- However, d-band energies and experimental shape still can not be matched exactly.
- Recent works suggest, that other relativistic effects might be need to be considered.

Results XANES of Copper

Introduction

- Overview
- Challenges
- Theory
- Kubo-Greenwood Formula
- Spin-Orbit Coupling Dirac Relativistic Atomic Calculation
- Implementation
- Optical conductivity Xanes
- Results
- Optical Conductivity in Gold
- XANES of Copper
- Conclusions

XANES of Copper

- Branching ratio and spin-orbit splitting now confirm with experiment without fitting.
- Total energy and energy broadening still need to be fitted.

Conclusions

Introduction

- Overview
- Challenges
- Theory
- Kubo-Greenwood Formula
- Spin-Orbit Coupling Dirac Relativistic Atomic Calculation
- Implementation
- Optical conductivity Xanes
- Results
- Optical Conductivity in Gold
- XANES of Copper
- Conclusions

Conclusions

- prtnabla 1 plus nspinor 2 is no longer completely wrong.
- The optical spectra of gold need further improvement.
- Spin-orbit splitting in XANES spectra can now be predicted with good accuracy.
- Changes will merged to the main branch as soon as possible.

Outlook

- Include core relaxation (RCPAW) to improve change of core energy levels at higher temperatures/densities.
- Explore other options to improve optical spectra of gold.

Conclusions

Introduction

- Overview
- Challenges
- Theory
- Kubo-Greenwood Formula
- Spin-Orbit Coupling Dirac Relativistic Atomic Calculation
- Implementation
- Optical conductivity Xanes
- Results
- Optical Conductivity in Gold
- XANES of Copper
- Conclusions

Thank you...

... for your attention!