## Spatial dispersion effects via long-wave DFPT

## Massimiliano Stengel

Louvain-La-Neuve, May 20th 2019


Miquel Royo


Andrea Schiaffino


Cyrus Dreyer


David Vanderbilt

## Spatial dispersion

Real space: Response to a gradient of the applied field Reciprocal space: $\mathbf{q}$-dependence of the response function

$$
\sigma_{a b}(\mathbf{q}, \omega)=\sigma_{a b}^{(0)}(\omega)+\sigma_{a b c}(\omega) q_{c}+\cdots
$$

Magneto-electric (ME)
Natural optical activity
R. M. Hornreich and S. Shtrikman, Phys. Rev. 171, 1065 (1968)
A. Malashevich and I. Souza, Phys. Rev. B 82, 245118 (2010)

## ELASTICITY

$c_{i j}(\omega, \mathbf{k})=c_{i j}(\omega)+i d_{i j, l}(\omega) k_{l}+e_{i j, l m}(\omega) k_{l} k_{m}+\cdots \quad$ Acoustical activity
D. Portigal and E. Burstein, Phys. Rev. 170, 673 (1968)

## Electromechanical response

## PIEZOELECTRICITY <br>  <br> $$
P_{\alpha}=e_{\alpha \beta \gamma} \varepsilon_{\beta \gamma}
$$

$\mathbf{P}$ response to uniform strain
Few materials display this effect
Size-independent property

## FLEXOELECTRICITY



$$
P_{\alpha}=\mu_{\alpha \lambda \beta \gamma} \frac{\partial \varepsilon_{\beta \gamma}}{\partial r_{\lambda}}
$$

P response to strain gradient
Universal property of all materials
Scales as the inverse of the sample size

## How to calculate $\boldsymbol{\mu}$ from first principles?

PROBLEM: Translational symmetry is broken!
Cannot use periodic boundary conditions, Bloch theorem, plane waves, etc.

## Solution: acoustic phonons



## Long-wave linear-response approach

1. Use density-functional perturbation theory (DFPT) to calculate the $\mathbf{P}$-response at small wavevectors $\mathbf{q}$ (both electronic \& lattice-mediated)


## Density-functional perturbation theory

$$
\begin{aligned}
& \hat{V}_{\mathrm{ext}}(\lambda)=\hat{V}_{\mathrm{ext}}^{(0)}+\lambda \hat{V}_{\mathrm{ext}}^{(1)}+\lambda^{2} \hat{V}_{\mathrm{ext}}^{(2)}+\cdots \\
& E(\lambda)=E^{(0)}+\lambda E^{(1)}+\lambda^{2} E^{(2)}+\cdots \\
& \psi_{i}(\lambda)=\psi_{i}^{(0)}+\lambda \psi_{i}^{(1)}+\cdots \\
& E^{(1)}=\sum_{i}\left\langle\psi_{i}^{(0)}\right| \hat{V}_{\mathrm{ext}}^{(1)}\left|\psi_{i}^{(0)}\right\rangle
\end{aligned}
$$

atomic forces (Hellmann-Feynman)

$$
E^{(2)}=\sum_{i}\left[\left\langle\psi_{i}^{(0)}\right| \hat{V}_{\mathrm{ext}}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(0)}\right| \hat{V}_{\mathrm{ext}}^{(2)}\left|\psi_{i}^{(0)}\right\rangle\right]
$$

second-order energy

$$
\begin{gathered}
\left(\hat{\mathcal{H}}^{(0)}+a \hat{P}-\epsilon_{m}^{(0)}\right)\left|\psi_{m}^{(1)}\right\rangle=-\hat{Q} \hat{\mathcal{H}}^{(1)}\left|\psi_{m}^{(0)}\right\rangle, \\
\hat{P}=\sum_{i=1}^{N}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad \hat{Q}=1-\hat{P} . \quad \text { (band projectors) }
\end{gathered}
$$

Sternheimer equation

## Variational principle: " $2 n+1$ " theorem

$$
\begin{aligned}
E^{(2)}= & \sum_{m}\left\langle\psi_{m}^{(1)}\right|\left(H^{(0)}-\epsilon^{(0)}\right)\left|\psi_{m}^{(1)}\right\rangle \\
& +\sum_{m}\left(\left\langle\psi_{m}^{(1)}\right| H^{(1)}\left|\psi_{m}^{(0)}\right\rangle+\left\langle\psi_{m}^{(0)}\right| H^{(1)}\left|\psi_{m}^{(1)}\right\rangle\right) \\
& +\frac{1}{2} \int_{\Omega} \int K_{\mathrm{Hxc}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) n^{(1)}(\mathbf{r}) n^{(1)}\left(\mathbf{r}^{\prime}\right) d^{3} r d^{3} r^{\prime} \\
& +\frac{1}{2} \frac{\partial^{2} E}{\partial \lambda^{2}}
\end{aligned}
$$

$$
\left\langle\psi_{j}^{(1)} \mid \psi_{l}^{(0)}\right\rangle=0, \quad j, l \in \mathcal{V}
$$

$$
\hat{Q}\left(H^{(0)}-\epsilon^{(0)}\right) \hat{Q}\left|\psi_{m}^{(1)}\right\rangle=-\hat{Q} \hat{\mathcal{H}}^{(1)}\left|\psi_{m}^{(0)}\right\rangle
$$

constraint (parallel transport gauge)
stationary condition (Sternheimer equation)

## Unconstrained variational formulation

$$
\begin{aligned}
& E^{(2)}= \sum_{m}\left\langle\psi_{m}^{(1)}\right|\left(\hat{H}^{(0)}+a \hat{P}-\epsilon_{m}^{(0)}\right)\left|\psi_{m}^{(1)}\right\rangle \\
&+\sum_{m}\left\langle\psi_{m}^{(1)}\right| \hat{Q} \hat{H}^{(1)}\left|\psi_{m}^{(0)}\right\rangle+c . c . \\
&+\frac{1}{2} \int_{\Omega} \int K_{\mathrm{Hxc}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) n^{(1)}(\mathbf{r}) n^{(1)}\left(\mathbf{r}^{\prime}\right) d^{3} r d^{3} r^{\prime} \\
&+\frac{1}{2} \frac{\partial^{2} E}{\partial \lambda^{2}}, \\
& \begin{array}{c}
\hat{P}=\sum_{\substack{i=1 \\
\text { (band projectors) }}}^{N}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \hat{Q}=1-\hat{P} .
\end{array}
\end{aligned}
$$

$$
n^{(1)}(\mathbf{r})=\sum_{m}\left\langle\psi_{m}^{(1)}\right| \hat{Q}|\mathbf{r}\rangle\left\langle\mathbf{r} \mid \psi_{m}^{(0)}\right\rangle+c . c .
$$

$\left\langle\psi_{v}^{(0)}\right|\left(\hat{H}^{(0)}+a \hat{P}-\epsilon_{n}\right)\left|\psi_{v}^{(0)}\right\rangle=\epsilon_{v}+a-\epsilon_{n}$,
$\left\langle\psi_{c}^{(0)}\right|\left(\hat{H}^{(0)}+a \hat{P}-\epsilon_{n}\right)\left|\psi_{c}^{(0)}\right\rangle=\epsilon_{c}-\epsilon_{n}$.

Automatically enforces orthogonality to the valence subspace if a is larger than the valence bandwidth!

## Monochromatic perturbations

$$
\begin{aligned}
E_{\mathbf{q}}^{\lambda_{1}^{*} \lambda_{2}}= & s \int_{\mathrm{BZ}}\left[d^{3} k\right] \sum_{m} E_{m \mathbf{k}, \mathbf{q}}^{\lambda_{1}^{*} \lambda_{2}} \\
& +\frac{1}{2} \int_{\Omega} \int K_{\mathbf{q}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) n_{\mathbf{q}}^{\lambda_{1} *}(\mathbf{r}) n_{\mathbf{q}}^{\lambda_{2}}\left(\mathbf{r}^{\prime}\right) d^{3} r d^{3} r^{\prime} \\
& +\frac{1}{2} \frac{\partial^{2} E}{\partial \lambda_{1}^{*} \partial \lambda_{2}}, \\
E_{m \mathbf{k}, \mathbf{q}}^{\lambda_{1}^{*} \lambda_{2}}= & \left\langle u_{m \mathbf{k}, \mathbf{q}}^{\lambda_{1}}\right|\left(\hat{H}_{\mathbf{k}+\mathbf{q}}^{(0)}+a \hat{P}_{\mathbf{k}+\mathbf{q}}-\epsilon_{m \mathbf{k}}\right)\left|u_{m \mathbf{k}, \mathbf{q}}^{\lambda_{2}}\right\rangle \\
& +\left\langle u_{m \mathbf{k}, \mathbf{q}}^{\lambda_{1}}\right| \hat{Q}_{\mathbf{k}+\mathbf{q}} \hat{H}_{\mathbf{k}, \mathbf{q}}^{\lambda_{2}}\left|u_{m \mathbf{k}}^{(0)}\right\rangle \\
& +\left\langle u_{m \mathbf{k}}^{(0)}\right|\left(\hat{H}_{\mathbf{k}, \mathbf{q}}^{\lambda_{1}}\right)^{\dagger} \hat{Q}_{\mathbf{k}+\mathbf{q}}\left|u_{m \mathbf{k}, \mathbf{q}}^{\lambda_{2}}\right\rangle, \\
n_{\mathbf{q}}^{\lambda}(\mathbf{r})= & 2 s \int_{\mathbf{B Z}}\left[d^{3} k\right] \sum_{m}\left\langle u_{m \mathbf{k}}^{(0)} \mid \mathbf{r}\right\rangle\langle\mathbf{r}| \hat{Q}_{\mathbf{k}+\mathbf{q}}\left|u_{m \mathbf{k}, \mathbf{q}}^{\lambda}\right\rangle .
\end{aligned}
$$

Parametric $\mathbf{q}$-dependence only via "gauge-invariant"
objects (operators, Coulomb kernel, etc.)


Can perform a perturbative $q$-expansion by using the
" $2 n+1$ " theorem

Need to derive
Variational
Density
No q dependence

## Long-wave DFPT

$$
\begin{aligned}
& E_{\gamma}^{\lambda_{1}^{*} \lambda_{2}}=\left.\frac{d E_{\mathbf{q}}^{\lambda_{1}^{*} \lambda_{2}}}{d q_{\gamma}}\right|_{\mathbf{q}=0}=\left.\frac{\partial E_{\mathbf{q}}^{\lambda_{1}^{*} \lambda_{2}}}{\partial q_{\gamma}}\right|_{\mathbf{q}=0} \\
& E_{\gamma}^{\lambda_{1} \lambda_{2}}=s \int_{\mathrm{BZ}}\left[d^{3} k\right] \sum_{m} E_{m \mathrm{k}, \gamma}^{\lambda_{i}^{\lambda} \lambda_{2}} \\
& +\frac{1}{2} \int_{\Omega} \int K_{\gamma}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \widehat{n^{\lambda_{1} *}(\mathbf{r}) n^{\lambda_{2}}\left(\mathbf{r}^{\prime}\right) d^{3} r d^{3} r^{\prime}} \\
& +\left.\frac{1}{2} \frac{\partial}{\partial q_{\gamma}}\left(\frac{\partial^{2} E}{\partial \lambda_{1}^{*} \partial \lambda_{2}}\right)\right|_{\mathbf{q}=0}, \\
& E_{m \mathbf{k}, \gamma}^{\lambda^{*} \lambda_{2}}=\left\langle u_{m \mathbf{k}}^{\lambda_{1}}\right| \partial_{\gamma} \hat{H}_{\mathbf{k}}^{(0)}\left|u_{m \mathbf{k}}^{\lambda_{2}}\right\rangle \quad \begin{array}{c}
\text { k-gradient of the } \\
\text { band projector } \\
\text { (" } \left.d / d k^{\prime \prime}\right)
\end{array} \\
& +\left\langle u_{m \mathbf{k}}^{\lambda_{1}}\right| \partial_{\gamma} \hat{Q}_{\mathbf{k}} \hat{\mathcal{H}}_{\mathbf{k}}^{\lambda_{2}}\left|u_{m \mathbf{k}}^{(0)}\right\rangle+\left\langle u_{m \mathbf{k}}^{(0)}\right|\left(\hat{\mathcal{H}}_{\mathbf{k}}^{\lambda_{1}}\right)^{\dagger} \partial_{\gamma} \hat{Q}_{\mathbf{k}}\left|u_{m \mathbf{k}}^{\lambda_{2}}\right\rangle \\
& +\left\langle u_{m \mathbf{k}}^{\lambda_{1}}\right| \hat{\mathbf{k}}_{\mathbf{k}, \gamma}^{\lambda_{\mathcal{L}}}\left|u_{m \mathbf{k}}^{(0)}\right\rangle+\left\langle u_{m \mathbf{k}}^{(0)}\left(\hat{H}_{\mathbf{k}, \gamma}^{\lambda_{1}}\right)^{\dagger} \mid u_{m \mathbf{k}}^{\lambda_{2}}\right\rangle . \\
& \text { Only } \mathbf{q}=0 \text { response needs } \\
& \text { to be calculated!! }
\end{aligned}
$$

## Is this useful to our scopes?

## FLEXOELECTRIC TENSOR

$$
\mu_{\alpha \beta, \gamma \delta}=\left.\frac{1}{2} \frac{d^{2} P_{\alpha, \beta}(\mathbf{q})}{d q_{\gamma} d q_{\delta}}\right|_{\mathbf{q}=\mathbf{0}}
$$



X Standard electric field not applicable (only defined at $\mathbf{q}=0$ )
$X$ Acoustic phonon perturbation needs to be specified first (some subtleties here)

X I know how to calculate first derivatives, but the flexoelectric tensor is $2^{\text {nd }}$ order in $\mathbf{q}$

## Metric and electric fields @ finite q



Acoustic phonon described via a
"metric wave" perturbation

Translation @ $\mathbf{q}=0$, vanishes in the curvilinear frame Uniform strain @ $O\left(q^{1}\right)$, recovers Hamann's theory

Andrea Schiaffino, Cyrus E. Dreyer, David Vanderbilt, and Massimiliano Stengel, Phys. Rev. B 99, 085107 (2018)

Electric field from vector potential:

$$
\mathcal{E}=-\frac{d \mathbf{A}}{d t}
$$



## $2^{\text {nd }}$ order formula

$\sqrt{ }$ " $2 n+1$ " theorem again: To calculate second order, knowledge of the gradient response to one of the perturbations is enough!
$\sqrt{ }$ If the response vanishes at $\mathbf{q}=0$, the formula is essentially the same as at $O\left(q^{1}\right)$ !


## Summary

- Unconstrained variational formulation of DFPT
- Long-wave expansion of the second-order energy via $2 n+1$
- Can calculate dispersion properties without ever treating a gradient explicitly
- Finite-q generalization of electric field and strain perturbations $\rightarrow$ flexo
- Dynamical quadrupoles (replace strain with phonon) $\rightarrow$ talk by M. Royo


## Ongoing work:

- Full flexoelectric tensor (w/ lattice contrib.)
- Other dispersion properties: Natural gyrotropy, etc.
- Frequency ( $\omega$ ) expansion: Nonadiabatic lattice dynamics, optical response, etc.
- ANADDB: How should we treat spatial dispersion tensors?
M. Royo and M. Stengel, Phys. Rev. X, in press (arXiv:1812.05935)

