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Working in the crystal-momentum representation, we calculate the optical conductivity of noncentrosym-
metric insulating crystals at first order in the wave vector of light. The time-even part of this tensor describes
natural optical activity and the time-odd part describes nonreciprocal effects such as gyrotropic birefringence.
The time-odd part can be uniquely decomposed into magnetoelectriclike and purely quadrupolar contributions.
The magnetoelectriclike component reduces in the static limit to the traceless part of the frozen-ion static
magnetoelectric polarizability while at finite frequencies it acquires some quadrupolar character in order to
remain translationally invariant. The expression for the orbital contribution to the conductivity at transparent
frequencies is validated by comparing numerical tight-binding calculations for finite and periodic samples.

DOI: 10.1103/PhysRevB.82.245118 PACS number!s": 78.20.Ek, 75.85.!t, 78.20.Bh

I. INTRODUCTION

Electric and magnetic effects are closely coupled in mag-
netoelectric !ME" materials. These are insulators with broken
spatial-inversion !P" and time-reversal !T" symmetries, in
which an applied electric field E induces a first-order mag-
netization M, and conversely a magnetic field B induces a
first-order electric polarization P. This cross response is de-
scribed in the static limit by a single magnetoelectric polar-
izability tensor

"ab #
!Mb

!Ea
=

!Pa

!Bb
, !1"

where the equality follows from changing the order of the
mixed derivatives of the free energy.

The ME effect has been intensively studied in recent
years. While the focus has been mostly on the static re-
sponse, ME effects in the optical range have also been
observed.1 For oscillating fields the thermodynamic argu-
ment leading to the second equality in Eq. !1" does not hold
because the system is not in equilibrium, and two separate
frequency-dependent polarizabilities are needed to describe
the dynamical ME coupling

#ab
me =

!Ma

!Eb
, #ab

em =
!Pa

!Bb
. !2"

It was recognized already in the 1960s that the coupling, Eq.
!2", leads to new optical effects in ME media, such as gyro-
tropic birefringence.2 Since the lattice-mediated response is
frozen out at optical frequencies, the purely electronic con-
tribution can be isolated. The first successful measurements,
on Cr2O3, found that the strength of the optical ME coupling
is comparable to that of the static one.3

The phenomenology of optical ME effects has been stud-
ied in detail in the literature, starting with the work of Horn-
reich and Shtrikman on gyrotropic birefringence.4 These au-
thors showed that this effect is a consequence of spatial
dispersion, appearing at first order in the expansion of the
effective optical conductivity tensor $defined by Eq. !6" be-
low% in powers of the wave vector q of light

$ab!q,%" = $ab
!0"!%" + $abc!%"qc + ¯ !3"

It is well known that the phenomenon of natural optical ac-
tivity is also a manifestation of spatial dispersion.5 While
natural optical activity is associated with the T-even part of
$abc!%", optical ME effects arise from the T-odd part, which
can be nonzero only in magnetically ordered systems, where
T symmetry is spontaneously broken. A careful consideration
of all response tensors which contribute to the conductivity
at linear order in q shows that these include, in addition to
the dynamic ME polarizabilities, Eq. !2", the electric-
quadrupole response of the medium.

Regarding the microscopic theories needed for quantita-
tive calculations, there are well-established molecular theo-
ries of spatial dispersion6,7 but the corresponding theory for
crystals is not equally developed. A band theory of natural
optical activity was put forth by Natori8 but has not been
used in first-principles calculations. To our knowledge, only
one group has reported calculations of natural optical activity
in solids at optical wavelengths, based on a somewhat differ-
ent formulation.9,10 As for the optical ME effects, quantita-
tive estimates of their magnitude have so far relied on cluster
models to mimic the crystalline environment.11,12

In this work, we develop a formalism for calculating
spatial-dispersion effects in the framework of band theory.
One difference with respect to previous works is that we give
a unified treatment of both T-even and T-odd parts of this
tensor. More importantly, we express the transition matrix
elements in the crystal momentum representation.13 This
choice has both practical and formal advantages. The practi-
cal advantage is that it leads to expressions which can be
easily implemented using localized Wannier orbitals. On the
theoretical side, the crystal-momentum representation is the
language in which the modern theories of electric
polarization,14,15 orbital magnetization,16–19 and orbital mag-
netoelectric response20,21 are formulated. As we shall see, our
expression for the orbital contribution to the T-odd part of
$abc!%" generalizes to finite frequencies the traceless part of
the orbital ME polarizability formula of Refs. 20 and 21.

The manuscript is organized as follows. In Sec. II we give
a self-contained account of the phenomenology of spatial-
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ELASTICITY

ACOUSTI CAL ACTIVITY

we may express this dependence by the relation form

T,(t) = cd(2) B,(t 2)—dr. (2 6)
0 C2s2s 0 N2 =p&

'2

0 0 cssss ss
(2.10)

A free energy can no longer be de6ned. However, the
applied strain contributes a term of the form VOT;8;
to the Hamiltonian and this can be used to establish
the time-reversal sylIunetry of c;;.
T„(t) and 8;(t) can be described. by an appropriate

superposition of plane waves. Taking any one such
wave, of frequency ~, we have the linear relationship
T, (44) = c;,(40) 8;(&4) between the stress and strain
amplitudes of any such wave, where C43(&0) is given by

c' (~)= c (t)e'""'dt (2.'/)

' P. C. %'atcrmaD, Phys. Rcv. 113, 1240 (j.959).

Since this linear relationship exists, and since the
stress and strain contribute a term to the Hamiltonian
of the above form, it follows from causality and from
the symmetry of such crystals under time-reversal
lllvallRIlcc tllRt c;I(40)) llkc $;I(40), Blllst bc sylllmctrlc)
I e, c'I(~) =ct'(~).
Up to this point we have assumed that the inter-

action between stress and strain is a local one. If the
interaction is nonlocal, the elastic constants exhibit a
dependence on wave vector and take the form c;;(40,k).
Again from consideration of time-reversal invariance,
one arrives at the relation c;;(44,k)=c;;(ar, —k). On
expand. ing c,;(&0,k) in powers of k, one obtains

c,;((o,k) =c;;( )+id;;, I(~)kl+e;;, I (a)klk„+ . (2.8)
The tensor d;; I(44) may be called the acoustic gyro-
tropic tensor. It follows, as in the case of light waves,
that d,;,I(co) is antisymmetric in the subscripts i and j,
i.e., d,;,I(co) =—d;;, I(&0), and real in the absence of at-
tenuation. Note, however, that d;;, ~ is actually a,
6fth-rank tensor d „~,~ and that the CGect of symmetry
on d,;,~ differs from its eftect on g;;g.
We are now in a position to see how 6rst-order

spatial dispersion affects acoustic wave propagation.
Acoustic propagation in a given direction does not
depend on the complete set of elastic constants, but on
a dynamical matrix [$7 containing certain of the
elastic constants. The basic equation for propagation of
an acoustic wave along the Xs axis of a crystal ls'

SJ~(40&k3)N3, =C3~'3~(44, k3)I~=pl| N3. (2.9)
In this equation u is the particle displacement, p is
the density, w is the wave velocity, and c»3„(44,k3) is
the appropriate set of elastic constants, written in full
notation. For the case where the Xs axis is an acoustic
axis having threefold or higher syrrunetry, and in the
absence of spatial dispersion, this equation takes the

&2s2s

[+7 2dI$233k$
0

~du2ss~s
Asms
0

0
0

&ssss

c44 id54, st| s—id 54,sks t, 44
0 0

0
0 (2.12)

in full and contracted tensor notation, respectively.
OII sllbstltlltlllg 'tllls cxplcssloll 111'to (2.9) olle flllds
that the transverse modes are circularly polarized with
phase velocities $/2 ——(1/p)(C44&d$4, 3k3). II1 Rllalogy
with the optical case, the plane of polarization of an
incident linearly polarized transverse-acoustic wave
will be rotated by an angle &=-2,cot[1/v —1/~y7. To
6rst order in d$4 3k$/c44 the angle is given by

$—2(0 lp d$4, 3/C44

3. ACOUSTICAL ACTIVITY IH VARIOUS
CRYSTAL CLASSES

(2.13)

Thc dePcndcncc of ds&, ~ on crystal sfxIlrnctry ls- morc
complicated than that of g;;~ since d;;, ~ is a fifth-rank
tensor whereas g;;g is a third-rank tensor. %C have seen,
however, that the effect of erst-order spatial dispersion
on a transverse-acoustic wave propagating along a
crystal direction of threefold or higher symmetry is
similar to its CBect on a light wave propagating along
such directions, the dynamical matrix being especially
simple in such cases. For the present, we restrict our
attention to acoustic propagation along axes of three-
fold or higher symmetry and along cubic [1007 axes,
which, because of symmetry, must be acoustic axes.
It is clear from (2.12), which applies to cubic, trigonal
hexagonal, and tetragonal crystals that only components
of the fhrm d;3133(i, 1=1, 2, 3) contribute to acoustical
activity along an acoustic axis. The coCKcient d132$$ (or
d34 3) couples transverse modes with one another, while
d13333 (or d33, 3) and d23333 (or d43, 3) couple transverse
modes to the longitudinal mode. Relationships between
the coeKcients may be found by consideration of
crystal symmetry, using methods described in standard
texts. 4 It is easily shown that all coe%cients must be
zero io centrosymmetric crystal classeg. Ig. all gniaxjgJ

and in contracted notation it takes the form
'Ng @44 0 0 Ng

[$7 N2 = 0 c44 0 N2 =p& N2 ~ (2 11).Ns. .0 0 ass. .es. .es.
The matrix [X)7 is the dynamical matrix describing
acoustic-wave propagation along an acoustic axis. When
the e6'ects of spatial dispersion are taken into account
(see Sec. 3) the dynamical matrix for optically active
uniaxial and cubic crystals takes the form

Acoustical activity
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Electromechanical response

P response/to strain gradient
Universal property of/all materials
Scales as/the inverse of/the sample size

PIEZOELECTRICITY FLEXOELECTRICITY

P response/to uniform strain
Few materials display this effect
Size9independent property
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R
EV

IE
W polarization,  P , induced by the two effects can most simply be 

described as:

 
Pi = di j kσ j k + µi j kl

∂ε j k

∂xl   
(1)

   

where  d ijk  ,   σ  jk  ,   µ  ijkl  ,   ε  jk  , and  x l   are the piezoelectric constant, 
applied stress, fl exoelectric constant, strain, and position 
coordinate, respectively. [  27  ,  31  ]  As indicated in  Equation 1 , the 
piezoelectric effect associates the mechanical stress with the 
polarization, while the fl exoelectric effect relates the strain gra-
dient to the polarization. The piezoelectric effect can only be 
observed in the 20 non-centrosymmetric crystal point groups, [  32  ]  
while the fl exoelectric effect can exist in all 32 point groups. 
That is,  d  is zero for all groups containing inversion symmetry. 
The universality of the fl exoelectric effect comes from the fact 
that inversion symmetry is disrupted by a strain gradient. [  33  ]  
Clever materials engineering can also lead to rational symmetry 
breakage, for example, in designing piezoelectric graphene. [  34  ]  
In centrosymmetric materials for which piezoelectric effects are 
absent,  Equation 1  simplifi es to:

 
Pi = µi j kl

∂ε j k

∂xl   
(2)

    
 The fl exoelectric effect in crystalline materials was further 

studied in the 1980s by Tagantsev. [  35  ,  36  ]  In Tagantsev’s phe-
nomenological studies, it was found that the fl exoelectric coef-
fi cient scales with the dielectric susceptibility of the material, 
according to

 
µχ̃

( e
a

)

  
(3)   

where  e  is the electron charge and  a  is the lattice constant. 
According to a rigid ion model used in Tagantsev’s studies, 
several factors contributed to the induced response, including: 
(1) static bulk fl exoelectricity, (2) dynamic bulk fl exoelectricity, 
and (3) surface fl exoelectricity. However, Resta found that the 
dynamic contribution due to the long-wavelength phonons was 
found to be the same as the bulk contribution. [  29  ]  In addition, 
in Resta’s simple elemental cubic model, for centrosymmetric 
materials there is no surface contribution from the non-zero 
quadrupole moment associated with ions that reside in the thin 
surface layer, as suggested by Tagantsev. Yet, the existence of 
surface contributions in more complex crystals remains unclear. 
Nevertheless, it has been experimentally confi rmed that the 
fl exoelectric effect scales with dielectric susceptibility. [  33  ,  37  ,  38  ]  

 Despite being a more general phenomenon than piezoelec-
tricity, fl exoelectricity was not observed in crystalline materials 
until decades after its introduction in the 1960s. The reason 
can be understood by considering the following argument. 
For ordinary dielectric materials, the electromechanical cou-
pling of the fl exoelectric effect is   µ   ≈  e/a   ≈  10 2  pC/m, while 
high-performance piezoelectric crystals such as lead zirconate 
titanate (PZT) and barium titanate (BT) possess piezoelectric 
coeffi cients on the order of 10 2  pC/N. [  39  ]  Qualitatively speaking, 
these coupling coeffi cients are of the same magnitude, but 
notice the difference in units. Without introducing permanent 
plastic deformation to a material—which are typically brittle 
crystals anyway—large strain gradients cannot be imparted in 
the macroscopic materials. By contrast, it is comparatively less 

 2.1. Mechanism of Flexoelectricity 

 Inspired by work carried out by Tolpygo and Mashkevich, [  25  ,  26  ]  
who found that electrostatic potential can arise from inhomo-
geneous deformations of the lattice (i.e., acoustic and optical 
phonons) in homopolar crystals such as silicon, the concept of 
fl exoelectricity was fi rst introduced in the 1960s by Kogan. [  27  ]  
Originally, fl exoelectricity was thought to be a type of piezoelec-
tric effect, but the effect is different in the way that it is caused 
by the spatial derivative of strain, that is, by a strain gradient. 
Consequently, fl exoelectricity can be found in any crystalline 
material regardless of the atomic bonding confi guration. [  28  ,  29  ]  
The effect is schematically illustrated in  Figure    1  . As shown in 
Figure  1 a, when a free-standing slab of material is bent such 
that the upper part of the slab experiences tensile strain and 
the lower part undergoes compressive strain, a strain gradient 
is formed in the material which induces an electric polarization 
 P  parallel to the gradient direction. For an intuitive explana-
tion, the physics of the effect in hard materials can be visual-
ized by considering the case of an ionic crystal. [  30  ]  Consider the 
salt model illustrated in Figure  1 b. Due to the non-zero strain 
gradient in the bent crystal, the centers of gravity of the nega-
tive ions (large circles) and the positive ions (small circles) no 
longer coincide, which results in a non-zero net dipole moment 
in the directions indicated by the arrows.  

 In the most general case, a polarization can result from 
both fl exoelectric and piezoelectric effects. The total electric 

     Figure  1 .     The fl exoelectric effect: an electric polarization is induced by a 
non-zero strain gradient. a) When a slab of material with thickness  t  is bent, 
a non-zero strain gradient results due to compressive (red arrows) and ten-
sile (blue) strains, leading to a fl exoelectric-induced polarization  P . b) For 
an ionic crystal, a non-zero dipole moment results from a misalignment 
of the centers of gravities of the positive and negative ions. The arrows 
indicate the direction of the gradient-induced polarization. Panel b is repro-
duced with permission. [  30  ]  Copyright 2006, American Physical Society.  
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How$to$calculate$μ from$first$principles?

PROBLEM:$Translational$symmetry$is$broken!
Cannot$use$periodic$boundary$conditions,$Bloch$

theorem,$plane$waves,$etc.

…or$is$there$a$way$around??



Solution:)acoustic)phonons)
Longitudinal)strain)gradient Shear)strain)gradient



Long%wave*linear%response*approach
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Y2.*Taylor*expansion*around*the*Γ point
(long%wave*limit):

O(q0):*translation*(vanishes)
O(q1):*strain*(PIEZO)
O(q2):"strain"gradient"(FLEXO)

1. Use*density%functional*perturbation*theory*(DFPT)*to*
calculate*the*P%response*at*small*wavevectors q

(both*electronic*&*lattice%mediated)
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an acoustic phonon as20

f (var,q)
�,↵ =

4

N

X

nk

huu↵
nk,q|H

⌧�

k,q |u
(0)
nki, (54)

where |uu↵
nk,qi =

P

0 |u⌧0↵
nk,qi is the response to an acous-

tic phonon in the laboratory frame, defined as usual as
the sublattice sum of individual atomic displacement.
Then |uu↵

nk,qi can be replaced, by using Eq. (33), with

the metric response function, |u(↵)
nk,qi, plus an additional

piece that only depends on the ground-state wavefunc-
tions, and can therefore be reabsorbed into the “nonva-
riational” part. Similar considerations could be used, in
principle, in order to get the acoustic activity tensor27

or the strain-gradient elastic tensor,28 which correspond
to the third and fourth order in q of the metric-metric
response.

IV. CONCLUSIONS {con}

In this work we have implementated and tested a
new “metric” wave perturbation, defined as an acoustic
phonon described in the frame that is co-moving with the
atoms, in the context of DFPT. It is aimed at calculating
the physical response of a crystalline material to a generic
mechanical deformation, and formally bridges the gap
between the already available “phonon”20 and “uniform
strain”1 perturbations. By focusing on the calculation
of the flexoelectric tensor components we have demon-
strated, via extensive numerical validation, its clear ad-
vantages in terms of e�ciency and ease of use with re-
spect to earlier approaches. We also study its conver-
gence properties with respect to various computational
parameters, and find them to be very favorable. We ra-
tionalize this finding by comparing (both analytically and
numerically) the charge-density response to the metric
and standard phonon perturbations.

Appendix A: Density-functional perturbation theory

MS[35]: Not sure whether this Section is actu-
ally needed; plus, it breaks the flow of the discus-
sion somewhat. An option would be to shorten
it; another would be to take the relevant bits and
merge them with the following subsection. What
do you think?
DV: I think my opinion is the latter: drop it, but
see if there are bits that should go later. (I’m
actually not sure any are needed.)

[35]
Consider an external perturbation to the electronic

ground state, which we describe by assuming a paramet-
ric dependence of the Hamiltonian operator on a small
parameter �,

Ĥ(�) = Ĥ(0) + �Ĥ(1) + · · · . (A1)

The linear response of the wavefunctions to the pertur-
bation can be recast in terms of a Sternheimer equation,

⇣

Ĥ(0) + aP̂ � ✏(0)m

⌘

| (1)
m i = �Q̂Ĥ(1)| (0)

m i, (A2) {stern}

where P̂ and Q̂ indicate the projector on the occupied
and unoccupied band manifolds, respectively, and the

Sternheimer equation

(band<projectors)

 i(�) =  
(0)
i + � 

(1)
i + · · · (35)

E(�) = E(0) + �E(1) + �2E(2) + . . . (36)

E(2) =
X

i

h
h (0)

i |V̂ (1)
ext | (1)

i i+ h (0)
i |V̂ (2)

ext | (0)
i i

i
. (37)

P̂ =

NX

i=1

| iih i|, Q̂ = 1� P̂ . (38)
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variational functional of the first-order wavefunctions,

E(2) =
X

m

h (1)
m |

⇣

H(0) � ✏(0)
⌘

| (1)
m i

+
X

m

⇣

h (1)
m |H(1)| (0)

m i+ h (0)
m |H(1)| (1)

m i
⌘

+
1

2

Z

⌦

Z

KHxc(r, r
0)n(1)(r)n(1)(r0)d3rd3r0

+
1

2

@2E

@�2
, (9)

(the double integral of the third line must be taken once
over all space, and once over the primitive unit cell, whose
volume is ⌦) to be solved within the “parallel-transport
gauge” (i.e. under the constraint of orthonormality to
the valence manifold, V),

h (1)
j | (0)

l i = 0, j, l 2 V. (10)

Eq. (7) and Eq. (9) manifestly coincide if the first-order
wavefunctions satisfy the Sternheimer equation, Eq. (2);
however, the latter expression has the virtue of being

stationary with respect to variations of | (1)
m i, and such

a characteristic will have a key importance in the context
of this work, as we shall see shortly.

B. Unconstrained variational formulation

First, recall the definition of the valence- and
conduction-band projectors (we have already seen the
latter in the previous subsection),

P̂ =
X

n

| (0)
n ih (0)

n |, Q̂ = 1� P̂ . (11)

We shall now use these definitions to write the linear re-
sponse problem as an unconstrained variational minimum
of the following functional

E(2) =
X

m

h (1)
m |

⇣

Ĥ(0) + aP̂ � ✏(0)m

⌘

| (1)
m i

+
X

m

h (1)
m |Q̂ Ĥ(1)| (0)

m i+ c.c.

+
1

2

Z

⌦

Z

KHxc(r, r
0)n(1)(r)n(1)(r0)d3rd3r0

+
1

2

@2E

@�2
, (12)

Note the explicit introduction of the band projectors in
the first and second line, and implicitly in the third line
via a redefinition of the first-order electron density,

n(1)(r) =
X

m

h (1)
m |Q̂|rihr| (0)

m i+ c.c.. (13)

The parameter a is a constant with the dimension of an
energy, whose role is to ensure that the matrix element

in the first line of Eq. (12), quadratic in the first-order
wavefunctions, is defined positive, and hence that the
functional is stable. To achieve this, consider the mean
value of the operator in the round brackets on a valence
(v) or conduction (c) state,

h (0)
v |(Ĥ(0) + aP̂ � ✏n)| (0)

v i = ✏v + a� ✏n, (14)

h (0)
c |(Ĥ(0) + aP̂ � ✏n)| (0)

c i = ✏c � ✏n. (15)

As n belongs to the valence band, the matrix element on
the conduction state is always positive independent of a.
Regarding the valence state, for the value ✏v + a � ✏n
to be guaranteed to be positive it su�ces to set a to
any positive energy that is larger than the total valence
bandwidth.
The insertion of a conduction band projector, Q̂, in

both the charge density and in the second line of Eq. (12)
serves to enforcing the parallel-transport gauge, i.e. that
at the variational minimum the solutions  (1) be strictly
orthogonal to the valence manifold. It is easy to see how
this works: Thanks to the projectors Q̂, the addition
of a small valence component to the trial solution  (1)

leaves the energy unaltered except for the (quadratic)
matrix element in the first line of Eq. (12). The latter,
in turn, always provides a positive contribution to the
energy, whose magnitude depends on the parameter a.
Therefore, a has no influence other than preventing the
first-order wavefunctions from acquiring arbitrarily large
components on the valence manifold, which would lead
to runaway solutions.
Following these considerations, it is not di�cult to

get convinced that the variational solution of this un-
constrained energy functional is unique, and corresponds
precisely to the constrained minimization procedure de-
scribed by Gonze3. It also leads, by di↵erentiating

Eq. (12) with respect to h (1)
m |, to the form of the Stern-

heimer equation proposed by Baroni and coworkers4,
⇣

Ĥ(0) + aP̂ � ✏(0)m

⌘

| (1)
m i = �Q̂ Ĥ(1)| (0)

m i. (16)

Such a form clearly enforces P̂ | (1)
m i = 0, and reduces

to Eq. (2) once the left-hand side is projected on the
conduction manifold.

C. Factorization of the phase

To appreciate the practical advantages of the uncon-
strained formulation of the previous subsection, I shall
now apply it to a monochromatic perturbation in a pe-
riodic crystal. This can be expressed as a phase times a
cell-periodic part,

Ĥ(1)(r, r0) = eiq·rĤ(1)
q (r, r0) (17)

As customary, we shall work with the cell-periodic part
of the Bloch wavefunctions by writing

 mk(r) = eik·rumk(r),

3

variational functional of the first-order wavefunctions,
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(the double integral of the third line must be taken once
over all space, and once over the primitive unit cell, whose
volume is ⌦) to be solved within the “parallel-transport
gauge” (i.e. under the constraint of orthonormality to
the valence manifold, V),

h (1)
j | (0)

l i = 0, j, l 2 V. (10)

Eq. (7) and Eq. (9) manifestly coincide if the first-order
wavefunctions satisfy the Sternheimer equation, Eq. (2);
however, the latter expression has the virtue of being

stationary with respect to variations of | (1)
m i, and such

a characteristic will have a key importance in the context
of this work, as we shall see shortly.

B. Unconstrained variational formulation

First, recall the definition of the valence- and
conduction-band projectors (we have already seen the
latter in the previous subsection),

P̂ =
X

n

| (0)
n ih (0)

n |, Q̂ = 1� P̂ . (11)

We shall now use these definitions to write the linear re-
sponse problem as an unconstrained variational minimum
of the following functional
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+
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, (12)

Note the explicit introduction of the band projectors in
the first and second line, and implicitly in the third line
via a redefinition of the first-order electron density,

n(1)(r) =
X

m

h (1)
m |Q̂|rihr| (0)

m i+ c.c.. (13)

The parameter a is a constant with the dimension of an
energy, whose role is to ensure that the matrix element

in the first line of Eq. (12), quadratic in the first-order
wavefunctions, is defined positive, and hence that the
functional is stable. To achieve this, consider the mean
value of the operator in the round brackets on a valence
(v) or conduction (c) state,

h (0)
v |(Ĥ(0) + aP̂ � ✏n)| (0)

v i = ✏v + a� ✏n, (14)

h (0)
c |(Ĥ(0) + aP̂ � ✏n)| (0)

c i = ✏c � ✏n. (15)

As n belongs to the valence band, the matrix element on
the conduction state is always positive independent of a.
Regarding the valence state, for the value ✏v + a � ✏n
to be guaranteed to be positive it su�ces to set a to
any positive energy that is larger than the total valence
bandwidth.
The insertion of a conduction band projector, Q̂, in

both the charge density and in the second line of Eq. (12)
serves to enforcing the parallel-transport gauge, i.e. that
at the variational minimum the solutions  (1) be strictly
orthogonal to the valence manifold. It is easy to see how
this works: Thanks to the projectors Q̂, the addition
of a small valence component to the trial solution  (1)

leaves the energy unaltered except for the (quadratic)
matrix element in the first line of Eq. (12). The latter,
in turn, always provides a positive contribution to the
energy, whose magnitude depends on the parameter a.
Therefore, a has no influence other than preventing the
first-order wavefunctions from acquiring arbitrarily large
components on the valence manifold, which would lead
to runaway solutions.
Following these considerations, it is not di�cult to

get convinced that the variational solution of this un-
constrained energy functional is unique, and corresponds
precisely to the constrained minimization procedure de-
scribed by Gonze3. It also leads, by di↵erentiating

Eq. (12) with respect to h (1)
m |, to the form of the Stern-

heimer equation proposed by Baroni and coworkers4,
⇣

Ĥ(0) + aP̂ � ✏(0)m

⌘

| (1)
m i = �Q̂ Ĥ(1)| (0)

m i. (16)

Such a form clearly enforces P̂ | (1)
m i = 0, and reduces

to Eq. (2) once the left-hand side is projected on the
conduction manifold.

C. Factorization of the phase

To appreciate the practical advantages of the uncon-
strained formulation of the previous subsection, I shall
now apply it to a monochromatic perturbation in a pe-
riodic crystal. This can be expressed as a phase times a
cell-periodic part,

Ĥ(1)(r, r0) = eiq·rĤ(1)
q (r, r0) (17)

As customary, we shall work with the cell-periodic part
of the Bloch wavefunctions by writing

 mk(r) = eik·rumk(r),

2

(corresponding to the flexoelectric tensor components)
are then extracted via a numerical fit. This introduces a
significant computational overhead (to repeat the same
calculations at several values of q), and is a potential
source of numerical inaccuracies related to the fit. It
would be much cheaper from the computational point of
view, and convenient from the point of view of the end
user, to directly calculate the desired dispersion coe�-
cients as part of the intrinsic linear-response capabilities
of the code. To achieve this goal, however, one needs
first to establish a general formalism to describing the
long-wavelength limit within the context of DFPT.

Here we provide a comprehensive solution to the above
issues by first rewriting the second-order energy at finite
q as an unconstrained minimization problem of a varia-
tional functional of the first-order wavefunctions. Next,
we show that the parametric q-dependence of the second-
order energy can be regarded as a small perturbation of
the q = 0 functional; hence, one can apply the standard
tools of DFPT to perform an analytic long-wavelength
expansion of an arbitrary response property of the crys-
tal in powers of q. Remarkably this strategy, in combi-
nation with the “2n + 1” theorem, enables writing ex-
plicit formulas for first-order dispersion coe�cients that
only need the uniform field wavefunction response as an
input. Thus, one can take advantage of the already im-
plemented linear-response tools to calculate a wide range
of new materials properties, such as flexoelectricity and
the natural optical activity, at essentially no cost – and
without the need for explicitly implementing or calculat-
ing the wavefunction response to a gradient of the ex-
ternal field. Finally, we demonstrate our formalism by
implementing the formulas for the and the clamped-ion
flexoelectric tensor and the dynamical quadrupole tensor

(the higher-order multipolar counterpart of the Born dy-
namical dipole tensor), and by showing that we obtain
the expected results in a tiny fraction of the computa-
tional burden that was formerly needed. We also discuss
some general issues of gradient couplings, such as their
dependence on the coordinate origin and on the reference
potential.

This work is organized as follows. In Section ?? we
start with a short introduction to DFPT, discuss the
modifications that are appropriate in the long-wavelength
limit, and provide general formulas for dispersion prop-
erties at the lowest orders in q. In Section ?? we sum-
marize the finite-q generalization of electric field, atomic
displacements and strain, showing that they correctly re-
duce to the known formulas in the q = 0 limit. In Sec-
tion ?? we use the long-wave approach combined with
the “2n + 1” theorem to derive closed formulas for the
dynamical quadrupole and flexoelectric tensors. Finally,
in Section ?? we discuss two important topics in relation
to the formalism established in this work: The issue of
origin dependence and the future generalization to other
dispersion properties. The Appendix provides additional
analytic support to the formulas reported in the main
text, in particular regarding the response to a gradient

of the vector potential field.

II. LONG-WAVE PERTURBATION THEORY

A. Density-functional perturbation theory

Here I shall briefly introduce the basic principles of
DFPT, both for completeness and in order to support
the formal developments of the later sections. Consider
an external perturbation to the electronic ground state,
which we describe by assuming a parametric dependence
of the Hamiltonian operator on a small parameter �,

Ĥ(�) = Ĥ(0) + �Ĥ(1) + �2Ĥ(2) + · · · . (1)

The linear response of the wavefunctions to the pertur-
bation can be recast in terms of a Sternheimer equation,

Q̂
⇣

H(0) � ✏(0)
⌘

Q̂| (1)
m i = �Q̂Ĥ(1)| (0)

m i, (2)

where Q̂ indicates the projector on the unoccupied band
manifold, and

Ĥ(1) = Ĥ(1) + V̂ (1) (3)

contains, in addition to the external perturbation Ĥ(1),
the self-consistent (SCF) potential response, V̂ (1), that
depends on the first-order electron density as

V (1)(r) =

Z

d3r0 KHxc(r, r
0)n(1)(r), (4)

n(1)(r) = 2<
X

m

h (0)
m |rihr| (1)

m i. (5)

KHxc(r, r0) is the Hartree, exchange and correlation
(Hxc) kernel, which is defined as the variation of the SCF
potential at r with respect to a charge density perturba-
tion at r0, calculated at the ground-state density n(0),

KHxc(r, r
0) =

�VHxc(r)

�n(r0)

�

�

�

n(0)
=

�2EHxc

�n(r)�n(r0)

�

�

�

n(0)
. (6)

The second-order variation of the energy with respect to
the perturbation can be then written as

E(2) =
X

m

h (0)
m |Ĥ(1)| (1)

m i+ 1

2

@2E

@�2
, (7)

where the second term on the right-hand side does not
depend on the first-order wavefunctions,

1

2

@2E

@�2
=

X

m

h (0)
m |Ĥ(2)| (0)

m i. (8)

One can also recast the linear-response problem as a

constraint (parallel transport gauge)

stationary condition (Sternheimer equation)--
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variational functional of the first-order wavefunctions,

E(2) =
X

m

h (1)
m |

⇣

H(0) � ✏(0)
⌘

| (1)
m i

+
X

m

⇣

h (1)
m |H(1)| (0)

m i+ h (0)
m |H(1)| (1)

m i
⌘

+
1

2

Z

⌦

Z

KHxc(r, r
0)n(1)(r)n(1)(r0)d3rd3r0
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@�2
, (9)

(the double integral of the third line must be taken once
over all space, and once over the primitive unit cell, whose
volume is ⌦) to be solved within the “parallel-transport
gauge” (i.e. under the constraint of orthonormality to
the valence manifold, V),

h (1)
j | (0)

l i = 0, j, l 2 V. (10)

Eq. (7) and Eq. (9) manifestly coincide if the first-order
wavefunctions satisfy the Sternheimer equation, Eq. (2);
however, the latter expression has the virtue of being

stationary with respect to variations of | (1)
m i, and such

a characteristic will have a key importance in the context
of this work, as we shall see shortly.

B. Unconstrained variational formulation

First, recall the definition of the valence- and
conduction-band projectors (we have already seen the
latter in the previous subsection),

P̂ =
X

n

| (0)
n ih (0)

n |, Q̂ = 1� P̂ . (11)

We shall now use these definitions to write the linear re-
sponse problem as an unconstrained variational minimum
of the following functional

E(2) =
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m

h (1)
m |

⇣
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| (1)
m i

+
X

m

h (1)
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0)n(1)(r)n(1)(r0)d3rd3r0

+
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, (12)

Note the explicit introduction of the band projectors in
the first and second line, and implicitly in the third line
via a redefinition of the first-order electron density,

n(1)(r) =
X

m

h (1)
m |Q̂|rihr| (0)

m i+ c.c.. (13)

The parameter a is a constant with the dimension of an
energy, whose role is to ensure that the matrix element

in the first line of Eq. (12), quadratic in the first-order
wavefunctions, is defined positive, and hence that the
functional is stable. To achieve this, consider the mean
value of the operator in the round brackets on a valence
(v) or conduction (c) state,

h (0)
v |(Ĥ(0) + aP̂ � ✏n)| (0)

v i = ✏v + a� ✏n, (14)

h (0)
c |(Ĥ(0) + aP̂ � ✏n)| (0)

c i = ✏c � ✏n. (15)

As n belongs to the valence band, the matrix element on
the conduction state is always positive independent of a.
Regarding the valence state, for the value ✏v + a � ✏n
to be guaranteed to be positive it su�ces to set a to
any positive energy that is larger than the total valence
bandwidth.
The insertion of a conduction band projector, Q̂, in

both the charge density and in the second line of Eq. (12)
serves to enforcing the parallel-transport gauge, i.e. that
at the variational minimum the solutions  (1) be strictly
orthogonal to the valence manifold. It is easy to see how
this works: Thanks to the projectors Q̂, the addition
of a small valence component to the trial solution  (1)

leaves the energy unaltered except for the (quadratic)
matrix element in the first line of Eq. (12). The latter,
in turn, always provides a positive contribution to the
energy, whose magnitude depends on the parameter a.
Therefore, a has no influence other than preventing the
first-order wavefunctions from acquiring arbitrarily large
components on the valence manifold, which would lead
to runaway solutions.
Following these considerations, it is not di�cult to

get convinced that the variational solution of this un-
constrained energy functional is unique, and corresponds
precisely to the constrained minimization procedure de-
scribed by Gonze3. It also leads, by di↵erentiating

Eq. (12) with respect to h (1)
m |, to the form of the Stern-

heimer equation proposed by Baroni and coworkers4,
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Ĥ(0) + aP̂ � ✏(0)m

⌘

| (1)
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m i. (16)

Such a form clearly enforces P̂ | (1)
m i = 0, and reduces

to Eq. (2) once the left-hand side is projected on the
conduction manifold.

C. Factorization of the phase

To appreciate the practical advantages of the uncon-
strained formulation of the previous subsection, I shall
now apply it to a monochromatic perturbation in a pe-
riodic crystal. This can be expressed as a phase times a
cell-periodic part,

Ĥ(1)(r, r0) = eiq·rĤ(1)
q (r, r0) (17)

As customary, we shall work with the cell-periodic part
of the Bloch wavefunctions by writing

 mk(r) = eik·rumk(r),

3

where Q̂ indicates the projector on the unoccupied band
manifold, and

Ĥ(1) = Ĥ(1) + V̂ (1) (3)

contains, in addition to the external perturbation Ĥ(1),
the self-consistent (SCF) potential response, V̂ (1), that
depends on the first-order electron density as

V (1)(r) =

Z

d3r0 KHxc(r, r
0)n(1)(r), (4)

n(1)(r) = 2<
X

m
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m |rihr| (1)

m i. (5)

KHxc(r, r0) is the Hartree, exchange and correlation
(Hxc) kernel, which is defined as the variation of the SCF
potential at r with respect to a charge density perturba-
tion at r0, calculated at the ground-state density n(0),

KHxc(r, r
0) =
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The second-order variation of the energy with respect to
the perturbation can be then written as

E(2) =
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m |Ĥ(1)| (1)
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, (7)

where the second term on the right-hand side does not
depend on the first-order wavefunctions,

1
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One can also recast the linear-response problem as
a variational functional of the first-order wavefunc-
tions, [21]
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, (9)

(the double integral of the third line must be taken once
over all space, and once over the primitive unit cell, whose
volume is ⌦) to be solved within the “parallel-transport
gauge” (i.e. under the constraint of orthonormality to
the valence manifold, V),

h (1)
j | (0)

l i = 0, j, l 2 V. (10)

Eq. (7) and Eq. (9) manifestly coincide if the first-order
wavefunctions satisfy the Sternheimer equation, Eq. (2);
however, the latter expression has the virtue of being

stationary with respect to variations of | (1)
m i, and such

a characteristic will have a key importance in the context
of this work, as we shall see shortly.

B. Unconstrained variational formulation

First, recall the definition of the valence- and
conduction-band projectors (we have already seen the
latter in the previous subsection),

P̂ =
X

n

| (0)
n ih (0)

n |, Q̂ = 1� P̂ . (11)

We shall now use these definitions to write the linear re-
sponse problem as an unconstrained variational minimum
of the following functional

E(2) =
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+
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+
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0)n(1)(r)n(1)(r0)d3rd3r0

+
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,

(12)

Note the explicit introduction of the band projectors in
the first and second line, and implicitly in the third line
via a redefinition of the first-order electron density,

n(1)(r) =
X

m

h (1)
m |Q̂|rihr| (0)

m i+ c.c. (13)

The parameter a is a constant with the dimension of an
energy, whose role is to ensure that the matrix element
in the first line of Eq. (12), quadratic in the first-order
wavefunctions, is defined positive, and hence that the
functional is stable. To see this, consider the mean value
of the operator in the round brackets on a valence (v) or
conduction (c) state,

h (0)
v |(Ĥ(0) + aP̂ � ✏n)| (0)

v i = ✏v + a� ✏n, (14)

h (0)
c |(Ĥ(0) + aP̂ � ✏n)| (0)

c i = ✏c � ✏n. (15)

As n belongs to the valence band, the matrix element on
the conduction state is always positive independent of a.
Regarding the valence state, for the value ✏v + a � ✏n
to be guaranteed to be positive it su�ces to set a to
any positive energy that is larger than the total valence
bandwidth.
The insertion of a conduction band projector, Q̂, in

both the charge density and in the second line of Eq. (12)
serves to enforcing the parallel-transport gauge, i.e. that
at the variational minimum the solutions  (1) be strictly
orthogonal to the valence manifold. It is easy to see how
this works: Thanks to the projectors Q̂, the addition
of a small valence component to the trial solution  (1)

leaves the energy unaltered except for the (quadratic)
matrix element in the first line of Eq. (12). The latter,
in turn, always provides a positive contribution to the
energy, whose magnitude depends on the parameter a.
Therefore, a has no influence other than preventing the

3

where Q̂ indicates the projector on the unoccupied band
manifold, and

Ĥ(1) = Ĥ(1) + V̂ (1) (3)

contains, in addition to the external perturbation Ĥ(1),
the self-consistent (SCF) potential response, V̂ (1), that
depends on the first-order electron density as

V (1)(r) =

Z

d3r0 KHxc(r, r
0)n(1)(r), (4)

n(1)(r) = 2<
X

m

h (0)
m |rihr| (1)

m i. (5)

KHxc(r, r0) is the Hartree, exchange and correlation
(Hxc) kernel, which is defined as the variation of the SCF
potential at r with respect to a charge density perturba-
tion at r0, calculated at the ground-state density n(0),

KHxc(r, r
0) =

�VHxc(r)

�n(r0)

�

�

�

n(0)
=

�2EHxc

�n(r)�n(r0)

�

�

�

n(0)
. (6)

The second-order variation of the energy with respect to
the perturbation can be then written as

E(2) =
X

m

h (0)
m |Ĥ(1)| (1)

m i+ 1

2

@2E

@�2
, (7)

where the second term on the right-hand side does not
depend on the first-order wavefunctions,

1

2

@2E

@�2
=

X

m

h (0)
m |Ĥ(2)| (0)

m i. (8)

One can also recast the linear-response problem as
a variational functional of the first-order wavefunc-
tions, [21]

E(2) =
X

m

h (1)
m |

⇣

H(0) � ✏(0)m

⌘

| (1)
m i

+
X

m

⇣

h (1)
m |H(1)| (0)

m i+ h (0)
m |H(1)| (1)

m i
⌘

+
1

2

Z

⌦

Z

KHxc(r, r
0)n(1)(r)n(1)(r0)d3rd3r0

+
1

2

@2E

@�2
, (9)

(the double integral of the third line must be taken once
over all space, and once over the primitive unit cell, whose
volume is ⌦) to be solved within the “parallel-transport
gauge” (i.e. under the constraint of orthonormality to
the valence manifold, V),

h (1)
j | (0)

l i = 0, j, l 2 V. (10)

Eq. (7) and Eq. (9) manifestly coincide if the first-order
wavefunctions satisfy the Sternheimer equation, Eq. (2);
however, the latter expression has the virtue of being

stationary with respect to variations of | (1)
m i, and such

a characteristic will have a key importance in the context
of this work, as we shall see shortly.

B. Unconstrained variational formulation

First, recall the definition of the valence- and
conduction-band projectors (we have already seen the
latter in the previous subsection),

P̂ =
X

n

| (0)
n ih (0)

n |, Q̂ = 1� P̂ . (11)

We shall now use these definitions to write the linear re-
sponse problem as an unconstrained variational minimum
of the following functional

E(2) =
X

m

h (1)
m |

⇣

Ĥ(0)+aP̂ � ✏(0)m

⌘

| (1)
m i

+
X

m

h (1)
m |Q̂ Ĥ(1)| (0)

m i+ c.c.

+
1

2

Z

⌦

Z

KHxc(r, r
0)n(1)(r)n(1)(r0)d3rd3r0

+
1

2

@2E

@�2
,

(12)

Note the explicit introduction of the band projectors in
the first and second line, and implicitly in the third line
via a redefinition of the first-order electron density,

n(1)(r) =
X

m

h (1)
m |Q̂|rihr| (0)

m i+ c.c. (13)

The parameter a is a constant with the dimension of an
energy, whose role is to ensure that the matrix element
in the first line of Eq. (12), quadratic in the first-order
wavefunctions, is defined positive, and hence that the
functional is stable. To see this, consider the mean value
of the operator in the round brackets on a valence (v) or
conduction (c) state,

h (0)
v |(Ĥ(0) + aP̂ � ✏n)| (0)

v i = ✏v + a� ✏n, (14)

h (0)
c |(Ĥ(0) + aP̂ � ✏n)| (0)

c i = ✏c � ✏n. (15)

As n belongs to the valence band, the matrix element on
the conduction state is always positive independent of a.
Regarding the valence state, for the value ✏v + a � ✏n
to be guaranteed to be positive it su�ces to set a to
any positive energy that is larger than the total valence
bandwidth.
The insertion of a conduction band projector, Q̂, in

both the charge density and in the second line of Eq. (12)
serves to enforcing the parallel-transport gauge, i.e. that
at the variational minimum the solutions  (1) be strictly
orthogonal to the valence manifold. It is easy to see how
this works: Thanks to the projectors Q̂, the addition
of a small valence component to the trial solution  (1)

leaves the energy unaltered except for the (quadratic)
matrix element in the first line of Eq. (12). The latter,
in turn, always provides a positive contribution to the
energy, whose magnitude depends on the parameter a.
Therefore, a has no influence other than preventing the

(band3projectors)

 i(�) =  
(0)
i + � 

(1)
i + · · · (35)

E(�) = E(0) + �E(1) + �2E(2) + . . . (36)

E(2) =
X

i

h
h (0)

i |V̂ (1)
ext | (1)

i i+ h (0)
i |V̂ (2)

ext | (0)
i i

i
. (37)

P̂ =

NX

i=1

| iih i|, Q̂ = 1� P̂ . (38)
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which allows one to reabsorb the incommensurate phase
eiq·r by performing appropriate shifts of the states and
operators in momentum space.

For the sake of generality, I shall consider the mixed
derivative with respect to two distinct perturbations, �1

and �2, whose physical nature will be specified later in
this manuscript. (The functional, strictly speaking, is
variational only for �1 = �2; yet, even in the mixed case
it preserves the stationary character with respect to small
variations in the first-order wavefunctions.) We shall im-
plicitly assume that the crystal under study is a time-
reversal symmetric insulator, and discuss possible exten-
sions to more general materials classes in Section XXXX.
The second-order energy can be written then as

E
�⇤
1�2

q = s

Z

BZ

[d3k]
X

m

E
�⇤
1�2

mk,q

+
1

2

Z

⌦

Z

Kq(r, r
0)n�1⇤

q (r)n�2
q (r0)d3rd3r0

+
1

2

@2E

@�⇤
1@�2

, (18)

where the quantity in the first line is given by

E
�⇤
1�2

mk,q = hu�1
mk,q|

⇣

Ĥ(0)
k+q + aP̂k+q � ✏mk

⌘

|u�2
mk,qi

+hu�1
mk,q|Q̂k+qĤ

�2
k,q|u

(0)
mki

+hu(0)
mk|

⇣

Ĥ�1
k,q

⌘†
Q̂k+q|u�2

mk,qi, (19)

s = 2 is the spin multiplicity and we have used the follow-
ing shorthand notation for the Brillouin-zone averages,

Z

BZ

[d3k] =
⌦

(2⇡)3

Z

BZ

d3k.

The last (third) line in Eq. (18) is, as usual, the nonva-
riational contribution to the second-order energy, while
the second line contains the self-consistent energy that
depends quadratically on the first-order electron densi-
ties?

n�
q(r) = 2s

Z

BZ

[d3k]
X

m

hu(0)
mk|rihr|Q̂k+q|u�

mk,qi. (20)

Note that I have introduced new symbols for the phase-
corrected Hxc kernel,

Kq(r, r
0) = KHxc(r, r

0)eiq·(r
0�r),

the operators in momentum space,

Ôk = e�ik·rÔeik·r
0
,

and the cell-periodic part of the charge-density response

n�(r) = eiq·rn�
q(r).

From these formulas, one can now appreciate the most
remarkable property of the unconstrained functional:

Unlike the original version, where the orthonormality
constraint is taken by calculating the scalar products
with ground-state valence orbitals at k+ q, the present
version is written in a manifestly gauge-invariant form,
i.e. only operators explicitly depend on q. This is a key
advantage when developing a perturbative theory in q,
as the derivatives of the operators in momentum space
are well-defined mathematical objects, and do not su↵er
from the phase indeterminacy of the Bloch states.

D. “2n+ 1” theorem

At this point, we can treat E
�⇤
1�2

q as a new func-

tional of |u�1,2

mk,qi, which depends parametrically on q.
We can then take advantage of the established mathe-

matical tools of perturbation theory to expand E
�⇤
1�2

q in
powers of q around q = 0, which has the physical inter-
pretation of a long-wave expansion. This can be pushed,
in principle, to any order in q. In particular, in virtue of
the “2n+1” theorem, the knowledge of the q-derivatives
of the wavefunctions up to order n is su�cient to cal-
culate response properties up to O(q2n+1). As we shall
see in the following, this is especially useful at the lowest
orders: The computational tools to calculate the n = 0
(and, sometimes, n = 1) response functions are already
available in many public first-principles packages, which
implies that many response properties can be, in princi-
ple, extracted without even implementing a new response

function in the code. (In the following, we shall illus-
trate this strategy at a formal level, without specifying
the physical nature of the perturbations; practical exam-
ples will be provided in Section XXXX.)

At first order in q the “2n+1” theorem reduces to the
Hellmann-Feynman theorem and can be summarized as
follows,

E
�⇤
1�2

� =
dE

�⇤
1�2

q

dq�

�

�

�

q=0
=

@E
�⇤
1�2

q

@q�

�

�

�

q=0
, (21)

which states that the q-gradients of the response func-
tions |u�

mk,qi are not needed to access the q-gradient of
the stationary second-order functional. (We specialize
our formulas to a neighborhood of q = 0, as such a limit
is directly relevant for the macroscopic response proper-
ties of the crystal.) In particular, we have

E
�⇤
1�2

� = s

Z

BZ

[d3k]
X

m

E
�⇤
1�2

mk,�

+
1

2

Z

⌦

Z

K�(r, r
0)n�1⇤(r)n�2(r0)d3rd3r0

+
1

2

@

@q�

✓

@2E

@�⇤
1@�2

◆

�

�

�

q=0
, (22)
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which allows one to reabsorb the incommensurate phase
eiq·r by performing appropriate shifts of the states and
operators in momentum space.

For the sake of generality, I shall consider the mixed
derivative with respect to two distinct perturbations, �1

and �2, whose physical nature will be specified later in
this manuscript. (The functional, strictly speaking, is
variational only for �1 = �2; yet, even in the mixed case
it preserves the stationary character with respect to small
variations in the first-order wavefunctions.) We shall im-
plicitly assume that the crystal under study is a time-
reversal symmetric insulator, and discuss possible exten-
sions to more general materials classes in Section XXXX.
The second-order energy can be written then as

E
�⇤
1�2

q = s

Z

BZ

[d3k]
X

m

E
�⇤
1�2

mk,q

+
1

2

Z

⌦

Z

Kq(r, r
0)n�1⇤

q (r)n�2
q (r0)d3rd3r0

+
1

2

@2E

@�⇤
1@�2

, (18)

where the quantity in the first line is given by

E
�⇤
1�2

mk,q = hu�1
mk,q|

⇣

Ĥ(0)
k+q + aP̂k+q � ✏mk

⌘

|u�2
mk,qi

+hu�1
mk,q|Q̂k+qĤ

�2
k,q|u

(0)
mki

+hu(0)
mk|

⇣

Ĥ�1
k,q

⌘†
Q̂k+q|u�2

mk,qi, (19)

s = 2 is the spin multiplicity and we have used the follow-
ing shorthand notation for the Brillouin-zone averages,

Z

BZ

[d3k] =
⌦

(2⇡)3

Z

BZ

d3k.

The last (third) line in Eq. (18) is, as usual, the nonva-
riational contribution to the second-order energy, while
the second line contains the self-consistent energy that
depends quadratically on the first-order electron densi-
ties?

n�
q(r) = 2s

Z

BZ

[d3k]
X

m

hu(0)
mk|rihr|Q̂k+q|u�

mk,qi. (20)

Note that I have introduced new symbols for the phase-
corrected Hxc kernel,

Kq(r, r
0) = KHxc(r, r

0)eiq·(r
0�r),

the operators in momentum space,

Ôk = e�ik·rÔeik·r
0
,

and the cell-periodic part of the charge-density response

n�(r) = eiq·rn�
q(r).

From these formulas, one can now appreciate the most
remarkable property of the unconstrained functional:

Unlike the original version, where the orthonormality
constraint is taken by calculating the scalar products
with ground-state valence orbitals at k+ q, the present
version is written in a manifestly gauge-invariant form,
i.e. only operators explicitly depend on q. This is a key
advantage when developing a perturbative theory in q,
as the derivatives of the operators in momentum space
are well-defined mathematical objects, and do not su↵er
from the phase indeterminacy of the Bloch states.

D. “2n+ 1” theorem

At this point, we can treat E
�⇤
1�2

q as a new func-

tional of |u�1,2

mk,qi, which depends parametrically on q.
We can then take advantage of the established mathe-

matical tools of perturbation theory to expand E
�⇤
1�2

q in
powers of q around q = 0, which has the physical inter-
pretation of a long-wave expansion. This can be pushed,
in principle, to any order in q. In particular, in virtue of
the “2n+1” theorem, the knowledge of the q-derivatives
of the wavefunctions up to order n is su�cient to cal-
culate response properties up to O(q2n+1). As we shall
see in the following, this is especially useful at the lowest
orders: The computational tools to calculate the n = 0
(and, sometimes, n = 1) response functions are already
available in many public first-principles packages, which
implies that many response properties can be, in princi-
ple, extracted without even implementing a new response

function in the code. (In the following, we shall illus-
trate this strategy at a formal level, without specifying
the physical nature of the perturbations; practical exam-
ples will be provided in Section XXXX.)

At first order in q the “2n+1” theorem reduces to the
Hellmann-Feynman theorem and can be summarized as
follows,

E
�⇤
1�2

� =
dE

�⇤
1�2

q

dq�

�

�

�

q=0
=

@E
�⇤
1�2

q

@q�

�

�

�

q=0
, (21)

which states that the q-gradients of the response func-
tions |u�

mk,qi are not needed to access the q-gradient of
the stationary second-order functional. (We specialize
our formulas to a neighborhood of q = 0, as such a limit
is directly relevant for the macroscopic response proper-
ties of the crystal.) In particular, we have

E
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1�2

� = s

Z

BZ

[d3k]
X

m

E
�⇤
1�2

mk,�

+
1

2
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⌦

Z

K�(r, r
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+
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q=0
, (22)

Need to derive
Variational
Density

No9q dependence

4

first-order wavefunctions from acquiring arbitrarily large
components on the valence manifold, which would lead
to runaway solutions.

Following these considerations, it is not di�cult to
get convinced that the variational solution of this un-
constrained energy functional is unique, and corresponds
precisely to the constrained minimization procedure de-
scribed by Gonze [22]. It also leads, by di↵erentiating

Eq. (12) with respect to h (1)
m |, to the form of the Stern-

heimer equation proposed by Baroni and coworkers [12],

⇣

Ĥ(0) + aP̂ � ✏(0)m

⌘

| (1)
m i = �Q̂ Ĥ(1)| (0)

m i. (16)

Such a form clearly enforces P̂ | (1)
m i = 0, and reduces

to Eq. (2) once the left-hand side is projected on the
conduction manifold.

C. Factorization of the phase

To appreciate the practical advantages of the uncon-
strained formulation of the previous subsection, we shall
now apply it to a monochromatic perturbation in a pe-
riodic crystal. This can be expressed as a phase times a
cell-periodic part,

Ĥ(1)(r, r0) = eiq·rĤ(1)
q (r, r0) (17)

As customary, we shall work with the cell-periodic part
of the Bloch wavefunctions by writing

 mk(r) = eik·rumk(r),

which allows one to reabsorb the incommensurate phase
eiq·r by performing appropriate shifts of the states and
operators in momentum space.

For the sake of generality, we shall consider the mixed
derivative with respect to two distinct perturbations, �1
and �2, whose physical nature will be specified later in
this manuscript. (The functional, strictly speaking, is
variational only for �1 = �2; yet, even in the mixed case
it preserves the stationary character with respect to small
variations in the first-order wavefunctions.) We shall im-
plicitly assume that the crystal under study is a time-
reversal (TR) symmetric insulator. (A generalization of
the formulas to TR-broken materials, while not di�cult,
would have unnecessarily complicated the notation.) The
second-order energy can be written then as

E
�⇤
1�2

q = s

Z

BZ

[d3k]
X

m

E
�⇤
1�2

mk,q

+
1

2

Z

⌦

Z

Kq(r, r
0)n�1⇤

q (r)n�2
q (r0)d3rd3r0

+
1

2

@2E

@�⇤1@�2
,

where the quantity in the first line is given by

E
�⇤
1�2

mk,q = hu�1
mk,q|

⇣

Ĥ(0)
k+q + aP̂k+q � ✏mk

⌘

|u�2
mk,qi

+hu�1
mk,q|Q̂k+qĤ

�2
k,q|u

(0)
mki

+hu(0)
mk|

⇣

Ĥ�1
k,q

⌘†
Q̂k+q|u�2

mk,qi, (18)

s = 2 is the spin multiplicity and we have used the follow-
ing shorthand notation for the Brillouin-zone averages,

Z

BZ

[d3k] =
⌦

(2⇡)3

Z

BZ

d3k.

The last (third) line in Eq. (18) is, as usual, the nonva-
riational contribution to the second-order energy, while
the second line contains the self-consistent energy that
depends quadratically on the first-order electron densi-
ties [23]

n�
q(r) = 2s

Z

BZ

[d3k]
X

m

hu(0)
mk|rihr|Q̂k+q|u�

mk,qi. (19)

Note that we have introduced new symbols for the phase-
corrected Hxc kernel (we shall specialize to the local den-
sity approximation, LDA),

Kq(r, r
0) = KHxc(r, r

0)eiq·(r
0�r),

the operators in momentum space,

Ôk = e�ik·rÔeik·r
0
,

and the cell-periodic part of the charge-density response

n�
q(r) = e�iq·rn�(r).

From these formulas, one can now appreciate the most
remarkable property of the unconstrained functional:
Unlike the original version, where the orthonormality
constraint is taken by calculating the scalar products
with ground-state valence orbitals at k+ q, the present
version is written in a manifestly gauge-invariant form,
i.e. only operators explicitly depend on q. This is a key
advantage when developing a perturbative theory in q,
as the derivatives of the operators in momentum space
are well-defined mathematical objects, and do not su↵er
from the phase indeterminacy of the Bloch states.

D. “2n+ 1” theorem

At this point, we can treat E
�⇤
1�2

q as a new func-

tional of |u�1,2

mk,qi, which depends parametrically on q. We
can then take advantage of the established mathematical

tools of perturbation theory to expand E
�⇤
1�2

q in powers
of q around q = 0, which has the physical interpretation
of a long-wave expansion. This can be pushed, in prin-
ciple, to any order in q. In particular, in virtue of the
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which allows one to reabsorb the incommensurate phase
eiq·r by performing appropriate shifts of the states and
operators in momentum space.

For the sake of generality, I shall consider the mixed
derivative with respect to two distinct perturbations, �1

and �2, whose physical nature will be specified later in
this manuscript. (The functional, strictly speaking, is
variational only for �1 = �2; yet, even in the mixed case
it preserves the stationary character with respect to small
variations in the first-order wavefunctions.) We shall im-
plicitly assume that the crystal under study is a time-
reversal symmetric insulator, and discuss possible exten-
sions to more general materials classes in Section XXXX.
The second-order energy can be written then as
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where the quantity in the first line is given by
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s = 2 is the spin multiplicity and we have used the follow-
ing shorthand notation for the Brillouin-zone averages,

Z

BZ

[d3k] =
⌦

(2⇡)3

Z

BZ

d3k.

The last (third) line in Eq. (18) is, as usual, the nonva-
riational contribution to the second-order energy, while
the second line contains the self-consistent energy that
depends quadratically on the first-order electron densi-
ties?
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X
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mk,qi. (20)

Note that I have introduced new symbols for the phase-
corrected Hxc kernel,

Kq(r, r
0) = KHxc(r, r

0)eiq·(r
0�r),

the operators in momentum space,

Ôk = e�ik·rÔeik·r
0
,

and the cell-periodic part of the charge-density response

n�(r) = eiq·rn�
q(r).

From these formulas, one can now appreciate the most
remarkable property of the unconstrained functional:

Unlike the original version, where the orthonormality
constraint is taken by calculating the scalar products
with ground-state valence orbitals at k+ q, the present
version is written in a manifestly gauge-invariant form,
i.e. only operators explicitly depend on q. This is a key
advantage when developing a perturbative theory in q,
as the derivatives of the operators in momentum space
are well-defined mathematical objects, and do not su↵er
from the phase indeterminacy of the Bloch states.

D. “2n+ 1” theorem

At this point, we can treat E
�⇤
1�2

q as a new func-

tional of |u�1,2

mk,qi, which depends parametrically on q.
We can then take advantage of the established mathe-

matical tools of perturbation theory to expand E
�⇤
1�2

q in
powers of q around q = 0, which has the physical inter-
pretation of a long-wave expansion. This can be pushed,
in principle, to any order in q. In particular, in virtue of
the “2n+1” theorem, the knowledge of the q-derivatives
of the wavefunctions up to order n is su�cient to cal-
culate response properties up to O(q2n+1). As we shall
see in the following, this is especially useful at the lowest
orders: The computational tools to calculate the n = 0
(and, sometimes, n = 1) response functions are already
available in many public first-principles packages, which
implies that many response properties can be, in princi-
ple, extracted without even implementing a new response

function in the code. (In the following, we shall illus-
trate this strategy at a formal level, without specifying
the physical nature of the perturbations; practical exam-
ples will be provided in Section XXXX.)

At first order in q the “2n+1” theorem reduces to the
Hellmann-Feynman theorem and can be summarized as
follows,
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which states that the q-gradients of the response func-
tions |u�

mk,qi are not needed to access the q-gradient of
the stationary second-order functional. (We specialize
our formulas to a neighborhood of q = 0, as such a limit
is directly relevant for the macroscopic response proper-
ties of the crystal.) In particular, we have
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which allows one to reabsorb the incommensurate phase
eiq·r by performing appropriate shifts of the states and
operators in momentum space.

For the sake of generality, I shall consider the mixed
derivative with respect to two distinct perturbations, �1

and �2, whose physical nature will be specified later in
this manuscript. (The functional, strictly speaking, is
variational only for �1 = �2; yet, even in the mixed case
it preserves the stationary character with respect to small
variations in the first-order wavefunctions.) We shall im-
plicitly assume that the crystal under study is a time-
reversal symmetric insulator, and discuss possible exten-
sions to more general materials classes in Section XXXX.
The second-order energy can be written then as
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where the quantity in the first line is given by
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s = 2 is the spin multiplicity and we have used the follow-
ing shorthand notation for the Brillouin-zone averages,

Z

BZ

[d3k] =
⌦

(2⇡)3

Z

BZ

d3k.

The last (third) line in Eq. (18) is, as usual, the nonva-
riational contribution to the second-order energy, while
the second line contains the self-consistent energy that
depends quadratically on the first-order electron densi-
ties?
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q(r) = 2s
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Note that I have introduced new symbols for the phase-
corrected Hxc kernel,

Kq(r, r
0) = KHxc(r, r

0)eiq·(r
0�r),

the operators in momentum space,

Ôk = e�ik·rÔeik·r
0
,

and the cell-periodic part of the charge-density response

n�(r) = eiq·rn�
q(r).

From these formulas, one can now appreciate the most
remarkable property of the unconstrained functional:

Unlike the original version, where the orthonormality
constraint is taken by calculating the scalar products
with ground-state valence orbitals at k+ q, the present
version is written in a manifestly gauge-invariant form,
i.e. only operators explicitly depend on q. This is a key
advantage when developing a perturbative theory in q,
as the derivatives of the operators in momentum space
are well-defined mathematical objects, and do not su↵er
from the phase indeterminacy of the Bloch states.

D. “2n+ 1” theorem

At this point, we can treat E
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mk,qi, which depends parametrically on q.
We can then take advantage of the established mathe-

matical tools of perturbation theory to expand E
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q in
powers of q around q = 0, which has the physical inter-
pretation of a long-wave expansion. This can be pushed,
in principle, to any order in q. In particular, in virtue of
the “2n+1” theorem, the knowledge of the q-derivatives
of the wavefunctions up to order n is su�cient to cal-
culate response properties up to O(q2n+1). As we shall
see in the following, this is especially useful at the lowest
orders: The computational tools to calculate the n = 0
(and, sometimes, n = 1) response functions are already
available in many public first-principles packages, which
implies that many response properties can be, in princi-
ple, extracted without even implementing a new response

function in the code. (In the following, we shall illus-
trate this strategy at a formal level, without specifying
the physical nature of the perturbations; practical exam-
ples will be provided in Section XXXX.)

At first order in q the “2n+1” theorem reduces to the
Hellmann-Feynman theorem and can be summarized as
follows,

E
�⇤
1�2

� =
dE

�⇤
1�2

q

dq�

�

�

�

q=0
=

@E
�⇤
1�2

q

@q�

�

�

�

q=0
, (21)

which states that the q-gradients of the response func-
tions |u�

mk,qi are not needed to access the q-gradient of
the stationary second-order functional. (We specialize
our formulas to a neighborhood of q = 0, as such a limit
is directly relevant for the macroscopic response proper-
ties of the crystal.) In particular, we have
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where the k- and band-resolved contribution reads as
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Here we have used, as in the introductory sections, the
calligraphic font to indicate the self-consistent first-order
Hamiltonian,

Ĥ�
k,q = Ĥ�

k,q + V̂ �
q , (24)

which includes the external perturbing operator plus the
self-consistent Hxc potential response,

V �
q (r) =

Z

d3r0 Kq(r, r
0)n�

q(r
0). (25)

Note that the symbol Ĥ only appears in the second line
of Eq. (23) – self-consistency e↵ects need to be explicitly
calculated only at the level of the O(q0) response. The
third line involves q-gradients of the nonselfconsistent,
i.e., external perturbing operator, Ĥ.

We have also used a short-hand notation for the q-
derivatives of the perturbation or the Hartree/XC kernel
(we shall discuss the latter more extensively in the next
subsection), e.g.,

Ĥ�
k,� =

@Ĥ�
k,q

@q�

�

�

�

q=0
, (26)

and for the k-derivatives of the ground-state operators
(Hamiltonian or band projectors), e.g.,

@�Ĥ
(0)
k =

@Ĥ(0)
k+q

@q�

�

�

�

q=0
. (27)

Finally, we have simply removed the q subscript from
those symbols (either response functions or perturbing
operators) that are intended to be calculated at q = 0,
e.g.,

|u�
mki = |u�

mk,q=0i. (28)

A brief hint on how Eqs. (22) and (23) were derived.
The first line of Eq. (23) comes from the first line of
Eq. (19) after dropping the derivative of the unperturbed
eigenvalue (it does not depend on q) and of the valence-
band projector (@�P̂k only has cross-gap matrix elements,
while both the bra and the ket are conduction states by
construction). The second and third lines of Eq. (23)
account for the remainder of Eq. (19), plus an additional
piece that comes from the SCF potential, and that we
have reabsorbed in the definition of Ĥ�

k,q. (Note that

we have dropped the conduction-band projectors, Q̂k, in
the third line, where they appeared next to a first-order

wavefunction.) To see this I shall first introduce a new

symbol, @E
�⇤
1�2

Hxc,q, to indicate the SCF part of the mixed
derivative formula [second line in Eq. (18)]. Then, by
applying the same notation conventions as above for the
q-gradients, one has

E
�⇤
1�2

Hxc,� =
1

2

Z

⌦

d3r V �1⇤(r)
@n�2(r)

@q�

+
1

2

Z

⌦

d3r
@n�1⇤(r)

@q�
V �2(r)

+
1

2

Z

⌦

d3r

Z

d3r0 K�(r, r
0)n�1⇤(r)n�2(r0).

(29)

The first two contributions on the rhs can be rewritten
by observing that
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By inserting Eq. (30) into Eq. (29), we obtain
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(31)

which accounts for the remaining terms in Eqs. (22) and
the second line of Eq. (23). The third and last line of
Eq. (23) originates from the non-variational contribution
to the second-order mixed derivative, and only involves
ground-state quantities.
The above derivations demonstrate that the “d/dq�”

response entails a computational workload that is com-
parable to the uniform (q = 0) case. Indeed, we stress
that only the q = 0 first-order wavefunctions are needed;
the additional burden consists in the implementation of
the new operators that appear in Eqs. (22) and (23),
but once this is done the evaluation of the corresponding
matrix elements proceeds at essentially no cost. Most
of these “new” operators are, in fact, well known in the
context of band theory, and are standard in most DFPT

implementations (e.g. the velocity operator, @�Ĥ
(0)
k , or

the derivatives of the band projectors). For example,
the second line of Eq. (23) might look unusual at first
sight, but it can be made more explicit by observing that
@�Q̂k = �@�P̂k, and that
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X
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, (32)

where |@̃�u(0)
nki are the “covariant derivatives” of the

ground-state wavefunctions (also known as “d/dk�” re-
sponse functions), and are orthogonal to the valence man-
ifold. Then one immediately obtains
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velocity operator

k%gradient of*the
band*projector

(“d/dk”)

q%gradient of*the Coulomb*kernel

Only q=0*response*needs
to be*calculated!!
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✗ Standard'electric field not applicable (only defined at'q=0)

✗ Acoustic phonon perturbation needs to be'specified first (some subtleties here)

✗ I'know'how'to'calculate'first'derivatives,'but'the'flexoelectric'tensor'is'2nd order'in'q

FLEXOELECTRIC+TENSOR

Is'this'useful'to'our'scopes?
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electric field

acoustic phonon



Metric'and'electric'fields'@'finite'q

Translation'@'q=0,'vanishes'in'the'curvilinear'frame

Uniform'strain'@'O(q1),'recovers'Hamann’s'theory

Acoustic'phonon'described'via'a'

“metric'wave”'perturbation'

Electric'field from vector'potential:'
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q=0:'d/dk perturbation

O(q1):'d2/dk2 +'orbital'BEfield

Andrea'Schiaffino,'Cyrus'E.'Dreyer,'David'Vanderbilt,'and'Massimiliano Stengel,'Phys.'Rev.'B'99,'085107'(2018)

“Microscopic polarization response”'! next talk by C.'Dreyer



2nd order'formula

✓ “2n+1”'theorem'again:'To'calculate'second'order,'knowledge'of'

the'gradient'response'to'one'of'the'perturbations'is'enough!

✓ If'the'response'vanishes'at'q=0,'the'formula'is'

essentially'the'same'as'at'O(q1)!

electric field

uniform strain

symmetric ! ↔ #:'$%/$'% wavefunctions (OK)''
antisymm.'! ↔ #:'orbital'magnetic field (??)



Summary

• Unconstrained variational formulation of3DFPT

• Long:wave3expansion of3the second:order energy via 2n+1

• Can3calculate dispersion properties without ever treating a3gradient explicitly

• Finite:q generalization of3electric field and3strain perturbations! flexo

• Dynamical quadrupoles (replace strain with phonon)3! talk by M.3Royo

• Full3flexoelectric tensor3(w/3lattice contrib.)

• Other dispersion properties:3Natural3gyrotropy,3etc.

• Frequency (ω)3expansion:3Nonadiabatic lattice dynamics,3optical response,3etc.

• ANADDB:3How should we treat spatial dispersion tensors?

Ongoing work:

M.3Royo3and3M.3Stengel,3Phys.3Rev.3X,3in3press (arXiv:1812.05935)


