

www.phythema.ulg.ac.be

Construction of complex Effective Lattice Models with MULTIBINIT and Electron-Lattice Couplings combining MULTIBINIT & SCALE UP

<u>Michael Marcus SCHMITT</u> Jordan BIEDER, Fabio RICCI, Pablo GARCIA-FERNANDEZ, Javier JUNQUERA, and Philippe GHOSEZ

9th international ABINIT developer workshop 20-22nd May 2019 - Louvain-la-Neuve, Belgium

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Effective Lattice Models

THE LATTICE MODEL IN MULTIBINIT

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Effective Lattice Models

Transform Ab-Initio Data into Polynomial Description

Q: A direction of displacements (u, η) Harmonic part extracted from DFPT - Higher order Fitted

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Effective Lattice Models

Transform Ab-Initio Data into Polynomial Description

Q: A direction of displacements (u, η) Harmonic part extracted from DFPT - Higher order Fitted

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Effective Lattice Models

Transform Ab-Initio Data into Polynomial Description

Q: A direction of displacements (u, η) Harmonic part extracted from DFPT - Higher order Fitted

Ground-State Structure Pnma: Composed of 5 modes and 2 strains Largest displacement about 0.4 Å \approx 10% of LC Competing Phases $R\overline{3}c$,14/mcm, P4/mbm, Cmcm

Ground-State Structure Pnma: Composed of 5 modes and 2 strains

Largest displacement about 0.4 Å $\approx 10\%$ of LC Competing Phases $R\overline{3}c$,14/mcm, P4/mbm, Cmcm

AbiDev - 2019

Ground-State Structure Pnma: Composed of 5 modes and 2 strains Largest displacement about $0.4 \text{ Å} \approx 10\%$ of LC Competing Phases $R\overline{3}c$,14/mcm, P4/mbm, Cmcm

Ground-State Structure Pnma: Composed of 5 modes and 2 strains Largest displacement about 0.4 Å \approx 10% of LC Competing Phases $R\overline{3}c$,14/mcm, P4/mbm, Cmcm

Use Ab-Initio Molecular Dynamics to Sample Instable Paths

A First Free Fit Using Multibinit

Mean Standard D	eviati	on values of the effective-potentia	al (meV/atm):
Energy	1.1	4.0803665397763584E+00	
Goal function v	alues	of the effective.potential	
with respect to	the t	est-set (eV^2/A^2):	
Forces+Stress	es :	2.4466967954928562E-02	
Forces	1.1	2.0260908611633852E-02	
Stresses	1	4.2060593432947067E-03	

A First Free Fit Using Multibinit

At T=50K Model goes to the Pnma-phase

Mean Standard Devi	iation	values	of t	he ef	fective	e-potential	(meV/atm):
Energy	: 4	.080366	53977	63584	E+00		
Goal function valu	les of	the ef	fecti	ve.po	tentia	L	
with respect to the	ne tes	t-set (eV^2/	A^2):			
Forces+Stresses	: 2	. 446696	79549	28562	E-02		
Forces	: 2	.026090	86116	33852	E-02		
Stresses	: 4	. 206059	34329	47067	E-03		

A First Free Fit Using Multibinit

At T=50K Model goes to the Pnma-phase

5000-steps,40-atoms \approx 70s on 4 cores

Mean Standard Dev	/iation	values	of the	effective-potenti	al (meV/atm):
Energy	: 4	.080366	5397763	584E+00	
Goal function va	ues of	the ef	fective	.potential	
with respect to t	the tes	t-set (eV^2/A^	2):	
Forces+Stresses	s: 2	. 446696	7954928	562E-02	
Forces	: 2	.026090	8611633	852E-02	
Stresses	: 4	. 206059	3432947	067E-03	

"Boundedness" is a Big Problem

T = 300K

ncell = 4x4x4 = 320 atoms

"UnBoundedness" - Negative Divergence in The Effective Potential

Appears if highest order term in Q is odd or even with negative coeffcient Add higher order terms to bound in direction Q! How to keep precision?

"UnBoundedness" - Negative Divergence in The Effective Potential

Appears if highest order term in Q is odd or even with negative coeffcient

Add higher order terms to bound in direction Q! How to keep precision?

"UnBoundedness" - Negative Divergence in The Effective Potential

Appears if highest order term in Q is odd or even with negative coeffcient

Add higher order terms to bound in direction Q! How to keep precision?

Appears if highest order term in Q is odd or even with negative coeffcient Add higher order terms to bound in direction Q! How to keep precision?

A Simple Algorithm to Impose Boundedness

Mean Standard Deviation values of the effective-potential (meV/atm):

Energy : 4.0803665397763584E+00

Goal function values of the effective.potential

with respect to the test-set (eV^2/A^2):

- Forces+Stresses
 2.4466967954928562E-02

 Forces
 2.0260908611633852E-02
- Stresses : 4.2060593432947067E-03

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP CaTiO3

Mean Standard Deviation values of the effective-potential (meV/atm):

Energy : 2.1664871069774949E+00

Goal function values of the effective.potential

with respect to the test-set (eV^2/A^2):

 Forces+Stresses
 2.7889442532740654E-02

 Forces
 2.3225875500530173E-02

 Stresses
 4.6635670322104803E-03

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP CaTiO3

Mean Standard Deviation values of the effective-potential (meV/atm):

Energy : 2.1664871069774949E+00

Goal function values of the effective.potential

with respect to the test-set (eV^2/A^2):

 Forces+Stresses
 2.7889442532740654E-02

 Forces
 2.3225875500530173E-02

 Stresses
 4.6635670322104803E-03

The model is bound 16x16x16 cells, 20480 atoms 6000-steps per temperature 96-cores ≈ 1h15min per temperature

Yashima, M. & Ali, R., Solid State Ionics, 2009, 180, 120 - 126

M.M. Schmitt

AbiDev - 2019

2. Electron-Lattice Coupling Using MULTIBINIT and SCALE-UP

The Information about the electronic states are hidden in the lattice effective potential parameters $E_{tot}(\mathbf{u}, \eta) = E_0(\mathbf{r}_0, 0) + E(\mathbf{u}, \eta)$ $E(u,\eta) = E^{phonon}(u) + E^{strain}(\eta) + E^{strain-phonon}(u,\eta)$ $E^{ph}(\mathbf{u}) = \sum_{ijkh\alpha\beta} K^{(2)}_{ijkh\alpha\beta}(u_{i\alpha} - u_{j\alpha})(u_{k\beta} - u_{h\beta}) + \sum_{ab} \sum_{ij\alpha} K^{(1,1)}_{aij\alpha}(u_{i\alpha} - u_{j\alpha}) + \sum_{ab} \sum_{khrt\alpha\beta\gamma} K^{(3)}_{ikhrt\alpha\beta\gamma}(u_{i\alpha} - u_{j\alpha}) + \sum_{ab} \sum_{ab} C_{ab}\eta_a\eta_b + \sum_{a} \sum_{ijhk\alpha\beta} \Lambda^{(1,2)}_{aijhk\alpha\beta}\eta_a(u_{i\alpha} - u_{j\alpha})$ $\times (u_{k\beta} - u_{h\beta})(u_{r\gamma} - u_{t\gamma})...$ $\times (u_{k\beta} - u_{h\beta})...$

Reintroduce some electronic states of interest with SCALE-UP $E_{tot}(\mathbf{u},\eta) = E_0(\mathbf{r}_0,0)) + E(\mathbf{u},\eta) + E_{el}(\mathbf{u},\eta)$ $E_{el}(\mathbf{u},\eta) = \sum_{ab} D_{ab}^U \gamma_{ab}(\mathbf{u},\eta) + 1/2 \sum_{ab} \sum_{a'b'} D_{ab}^U D_{a'b'}^U U_{aba'b'} - D_{ab}^l D_{a'b'}^l I_{aba'b'}$ With the central quantity: $D_{ab} = d_{ab} - d_{ab}^{(0)}$ And the electron-lattice coupling expressed in $\gamma_{ab}(\mathbf{u},\eta)$

The Information about the electronic states are hidden in the lattice effective potential parameters $E_{tot}(\mathbf{u}, \eta) = E_0(\mathbf{r}_0, 0) + E(\mathbf{u}, \eta)$ $E(u,\eta) = E^{phonon}(u) + E^{strain}(\eta) + E^{strain-phonon}(u,\eta)$ $\times (u_{k\beta} - u_{h\beta})...$ $\times (u_{k\beta} - u_{h\beta})(u_{r\gamma} - u_{t\gamma})...$

Reintroduce some electronic states of interest with SCALE-UP

$$E_{tot}(\mathbf{u},\eta) = E_0(\mathbf{r}_0,0)) + E(\mathbf{u},\eta) + E_{el}(\mathbf{u},\eta)$$

$$E_{el}(\mathbf{u},\eta) = \sum_{ab} D_{ab}^U \gamma_{ab}(\mathbf{u},\eta) + 1/2 \sum_{ab} \sum_{a'b'} D_{ab}^U D_{a'b'}^U U_{aba'b'} - D_{ab}^I D_{a'b'}^I I_{aba'b'}$$
With the central quantity: $D_{ab} = d_{ab} - d_{ab}^{(0)}$
And the electron-lattice coupling expressed in
$$\gamma_{ab}(\mathbf{u},\eta)$$

The Information about the electronic states are hidden in the lattice effective potential parameters $E_{tot}(\mathbf{u}, \eta) = E_0(\mathbf{r}_0, 0) + E(\mathbf{u}, \eta)$ $E(u,\eta) = E^{phonon}(u) + E^{strain}(\eta) + E^{strain-phonon}(u,\eta)$ $\times (u_{k\beta} - u_{h\beta})...$ $\times (u_{k\beta} - u_{h\beta})(u_{r\gamma} - u_{t\gamma})...$

Reintroduce some electronic states of interest with SCALE-UP

$$E_{tot}(\mathbf{u},\eta) = E_0(\mathbf{r}_0,0)) + E(\mathbf{u},\eta) + E_{el}(\mathbf{u},\eta)$$

$$E_{el}(\mathbf{u},\eta) = \sum_{ab} D_{ab}^U \gamma_{ab}(\mathbf{u},\eta) + 1/2 \sum_{ab} \sum_{a'b'} D_{ab}^U D_{a'b'}^U U_{aba'b'} - D_{ab}^I D_{a'b'}^I I_{aba'b'}$$
With the central quantity: $D_{ab} = d_{ab} - d_{ab}^{(0)}$
And the electron-lattice coupling expressed in
$$\gamma_{ab}(\mathbf{u},\eta)$$

The Information about the electronic states are hidden in the lattice effective potential parameters $E_{tot}(\mathbf{u}, \eta) = E_0(\mathbf{r}_0, 0) + E(\mathbf{u}, \eta)$ $E(u,\eta) = E^{phonon}(u) + E^{strain}(\eta) + E^{strain-phonon}(u,\eta)$ $\times (u_{k\beta} - u_{h\beta})...$ $\times (u_{k\beta} - u_{h\beta})(u_{r\gamma} - u_{t\gamma})...$

Reintroduce some electronic states of interest with SCALE-UP

$$E_{tot}(\mathbf{u},\eta) = E_0(\mathbf{r}_0,0)) + E(\mathbf{u},\eta) + E_{el}(\mathbf{u},\eta)$$

$$E_{el}(\mathbf{u},\eta) = \sum_{ab} D_{ab}^U \gamma_{ab}(\mathbf{u},\eta) + 1/2 \sum_{ab} \sum_{a'b'} D_{ab}^U D_{a'b'}^U U_{aba'b'} - D_{ab}^l D_{a'b'}^l I_{aba'b'}$$
With the central quantity: $D_{ab} = d_{ab} - d_{ab}^{(0)}$
And the electron-lattice coupling expressed in
$$\gamma_{ab}(\mathbf{u},\eta)$$

The Information about the electronic states are hidden in the lattice effective potential parameters $E_{tot}(\mathbf{u}, \eta) = E_0(\mathbf{r}_0, 0) + E(\mathbf{u}, \eta)$ $E(u,\eta) = E^{phonon}(u) + E^{strain}(\eta) + E^{strain-phonon}(u,\eta)$ Access $E^{ph}(\mathbf{u}) = \sum_{ijkh\alpha\beta} K_{ijkl}^{(2)}$ Electronic Structure at Finite T $I_a(u_{i\alpha} - u_{i\alpha})$ <u>λ</u> ikhrtαβγ Electronic Structure of Large Scale Objects $(\alpha - u_{i\alpha})$ $\times (u_{k\beta} - u_{l})$ • $D_{ab} \neq 0$: Magnetic States, Polarons, Excitons F-LIP Rein $E_{tot}(\mathbf{u},\eta) = E_0(\mathbf{r}_0,0) + E(\mathbf{u},\eta) + E_{el}(\mathbf{u},\eta)$ $E_{el}(\mathbf{u},\eta) = \sum_{ab} D_{ab}^U \gamma_{ab}(\mathbf{u},\eta) + 1/2 \sum_{ab} \sum_{a'b'} D_{ab}^U D_{a'b'}^U U_{aba'b'} - D_{ab}^I D_{a'b'}^I I_{aba'b'}$ With the central quantity: $D_{ab} = d_{ab} - d_{ab}^{(0)}$ And the electron-lattice coupling expressed in $\gamma_{ab}(\mathbf{u},\eta)$

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Technicalities

THE MULTIBINIT - SCALE-UP INTERFACE

Multibinit incorporates SCALE-UP as a library

FC_LIBS="-L/path/to/scaleup/build/src/.libs/ -lscaleup"

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Technicalities

THE MULTIBINIT - SCALE-UP INTERFACE

Multibinit incorporates SCALE-UP as a library

FC_LIBS="-L/path/to/scaleup/build/src/.libs/ -lscaleup"

Lattice and Electronic Model share the same modelfile .xml

Code Licensing/Distribution ?!

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Technicalities

THE MULTIBINIT - SCALE-UP INTERFACE

The SCALE-UP variables are parsed with their one parser

abinit/src/78_effpot/m_scup_dataset.F90

And stored in a separate datatype

type scup_dtset_type
!Integer
integer :: scup_nspeck
integer :: scup_ndivsm
integer :: scup_printniter
!Logicals
<pre>logical :: scup_elec_model</pre>
logical :: scup_initorbocc
<pre>logical :: scup_ismagnetic</pre>
logical :: scup_istddft
logical :: scup_printbands
logical :: scup_printeigv
logical :: scup_printeltic
logical :: scup_printgeom
logical :: scup_printorbocc
!Real
real*8 :: scup_tcharge
!Integer Array
<pre>integer :: scup_ksamp(3)</pre>
!Real Array
<pre>real(dp),allocatable :: scup_speck(:,:)</pre>
!Kpath Type
<pre>type(kpath_t) :: scup_kpath</pre>
end type scup_dtset_type

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

A simple JT-model

A first model using electron-lattice coupling

Classical Problem of cooperative Jahn-Teller Effect in Perovskites Corner shared transition metal octahedra with double-degenerate electronic state

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

A simple JT-model

A first model using electron-lattice coupling

Classical Problem of cooperative Jahn-Teller Effect in Perovskites Corner shared transition metal octahedra with double-degenerate electronic state

Ie

Crystal Pield Splitting Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP ○○○○○●○○ A simple JT-model

A first model using electron-lattice coupling

Electron-Lattice Coupling - Investigate Band-Structure and DOS

$$U_{e_g} = 3eV$$
, $I_{e_g} = 1.5eV$, $\gamma_{pd} = 1.5eV$

Cubic

Conclusions

- Complex Lattice Effective Potentials
 - A new bound algorithm to facilitate automatic generation of effective lattice potentials
 - $\circ~\mbox{CaTiO}_3$ model describes correctly temperature development in the Ground-State Phase
- MULTIBINIT + SCALE-UP Interface
 - Coupled effective lattice-electronic models open exciting possibilities

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Outlook

Outlook Challenges for the MULIBINIT-SCUP Project

1. Code Licensing and Distribution Should MB-SCUP interface move to the trunk ?

2. Testing

Have a special builder on the test-farm \widehat{a}

3. Further integration of Datastructure SCUP input/output in the abinit _HIST.nc Format ?

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Outlook

Outlook Challenges for the MULIBINIT-SCUP Project

1. Code Licensing and Distribution Should MB-SCUP interface move to the trunk ?

2. Testing

Have a special builder on the test-farm ?

3. Further integration of Datastructure SCUP input/output in the abinit _HIST.nc Format ?

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Outlook

Outlook Challenges for the MULIBINIT-SCUP Project

1. Code Licensing and Distribution Should MB-SCUP interface move to the trunk ?

2. Testing

Have a special builder on the test-farm ?

3. Further integration of Datastructure SCUP input/output in the abinit _HIST.nc Format ?

Electron-Lattice Coupling Using , MULTIBINIT and SCALE-UP

Outlook

Outlook Challenges for the MULIBINIT-SCUP Project

1. Code Licensing and Distribution Should MB-SCUP interface move to the trunk ?

2. Testing

Have a special builder on the test-farm ?

3. Further integration of Datastructure SCUP input/output in the abinit _HIST.nc Format ?