Miquel Royo and Massimiliano Stengel

Institut de Ciència de Materials de Barcelona

SPATIAL DISPERSION PROPERTIES FROM DFPT: DYNAMICAL QUADRUPOLES AND FLEXOELECTRIC TENSOR

9th ABINIT Developers Workshop Louvain-la-Neuve, May 2019

I LONG-WAVE DFPT APPROACH TO SPATIAL DISPERSION

Flexoelectric Tensor Dynamical Quadrupole Tensor

II NUMERICAL RESULTS

Method validation

Convergence study

III IMPLEMENTATION DETAILS

IV CONCLUSIONS AND OUTLOOK

SPATIAL DISPERSION PROPERTIES

Flexoelectricity

$$P_{\alpha} = \mu_{\alpha\beta,\gamma\delta} \frac{\partial \varepsilon_{\beta\delta}}{\partial r_{\gamma}}$$

Polarization response to a strain gradient

3 Contributions to $\mu_{\alpha\beta,\gamma\delta}$:

- Electronic (clamped-ion)
- Lattice
- Mixed

Clamped-Ion Flexoelectric tensor

Spatial dispersion of CI piezoelectric tensor

$$e_{\alpha\beta\delta} \propto \frac{d^{2}E}{d\varepsilon_{\alpha} \ d\eta_{\beta\delta}} \bigg|_{q=0} = E^{\varepsilon_{\alpha}\eta_{\beta\delta}}$$
$$\mu_{\alpha\beta,\gamma\delta} \propto \frac{d^{3}E}{d\varepsilon_{\alpha} \ d\eta_{\beta\delta} dq_{\gamma}} \bigg|_{q=0} = E_{\gamma}^{\varepsilon_{\alpha}\eta_{\beta\delta}}$$

X Electric field and strain perturbations formulated at q=0

$$\varepsilon_{\alpha}^{q} \leftarrow \frac{dA_{\alpha}^{q}}{dt} \checkmark \text{Vector potential}$$
$$\eta_{\beta\delta}^{q} \leftarrow \frac{d(\beta)^{q}}{dq_{\delta}} \checkmark \text{Metric wave}$$

Long-wave DFPT formulation of CI FxE tensor

METRIC WAVE - HOMOGENEOUS STRAIN

$$\mu_{\alpha\beta,\gamma\delta} = \frac{1}{\Omega} E_{\gamma\delta}^{\mathcal{E}^*_{\alpha}(\beta)}$$

$$\hat{H}_{\mathbf{k},\delta}^{(\beta)} = i\hat{H}_{\mathbf{k}}^{\eta_{\beta\delta}}$$
$$|u_{m\mathbf{k},\delta}^{(\beta)}\rangle = i|u_{m\mathbf{k}}^{\eta_{\beta\delta}}\rangle$$

NEW OBJECTS

$$\widetilde{E}_{\gamma\delta}^{\mathcal{E}_{\alpha}^{*}(\beta)} = s \int_{\mathrm{BZ}} [d^{3}k] \sum_{m} \widetilde{E}_{m\mathbf{k},\gamma\delta}^{\mathcal{E}_{\alpha}^{*}(\beta)} + \frac{i}{2} \int_{\Omega} \int \widetilde{K_{\gamma}(\mathbf{r},\mathbf{r}')} n^{\mathcal{E}_{\alpha}}(\mathbf{r}) n^{\eta_{\beta\delta}}(\mathbf{r}') d^{3}r d^{3}r'$$

 $\widetilde{E}_{m\mathbf{k},\gamma\delta}^{\mathcal{E}^*_{\alpha}(\beta)} = i\langle u_{m\mathbf{k}}^{\mathcal{E}_{\alpha}} | \partial_{\gamma} \hat{H}_{\mathbf{k}}^{(0)} | u_{m\mathbf{k}}^{\eta_{\beta\delta}} \rangle + i\langle u_{m\mathbf{k}}^{\mathcal{E}_{\alpha}} | \partial_{\gamma} \hat{Q}_{\mathbf{k}} \hat{\mathcal{H}}_{\mathbf{k}}^{\eta_{\beta\delta}} | u_{m\mathbf{k}}^{(0)} \rangle + i\langle u_{m\mathbf{k}}^{(0)} | \hat{V}^{\mathcal{E}_{\alpha}} \partial_{\gamma} \hat{Q}_{\mathbf{k}} | u_{m\mathbf{k}}^{\eta_{\beta\delta}} \rangle$

$$+\frac{1}{2}\langle u_{m\mathbf{k}}^{\mathcal{E}_{\alpha}}\hat{H}_{\mathbf{k},\gamma\delta}^{(\beta)}u_{m\mathbf{k}}^{(0)}\rangle+i\langle u_{m\mathbf{k},\gamma}^{A_{\alpha}}|u_{m\mathbf{k}}^{\eta_{\beta\delta}}\rangle$$

M. Royo and M. Stengel, PRX (accepted)

SPATIAL DISPERSION PROPERTIES **Dynamical quadrupoles**

Second moment of the charge response to an atomic displacement

$$Q_{\kappa\beta}^{\mathbf{q}} = \int_{\Omega} \rho_{\mathbf{q}}^{\tau_{\kappa\beta}}(\mathbf{r}) d^{3}r = -iq_{\beta}Z_{\kappa} + 2E_{\mathbf{q}}^{\varphi^{*}\tau_{\kappa\beta}}$$

$$\frac{d^{2}E}{d\varphi_{-\mathbf{q}}d\tau_{\kappa\beta,\mathbf{q}}}$$

$$Q_{\kappa\beta}^{\mathbf{q}} = -iq_{\gamma}Q_{\kappa\beta}^{(1,\gamma)} - \frac{q_{\gamma}q_{\delta}}{2}Q_{\kappa\beta}^{(2,\gamma\delta)} + \cdots$$
Born effective charge Quadrupole
 $\delta_{\beta\gamma}Z_{\kappa} + 2E_{\gamma}^{\varphi^{*}\tau_{\kappa\beta}} 2E_{\gamma\delta}^{\varphi^{*}\tau_{\kappa\beta}} 2E_{\gamma\delta}^{\varphi^{*}\tau_{\kappa\beta}}$
ONLY AT NON CENTROSYMMETRIC
ATOMIC POSITIONS

Long-wave DFPT formulation of dynamic quadrupoles

$$Q_{\kappa\beta}^{(2,\gamma\delta)} = -2E_{\gamma\delta}^{\varphi^*\tau_{\kappa\beta}}$$

SCALAR POTENTIAL - ELECTRIC FIELD

$$|u_{m\mathbf{k}}^{\mathcal{E}_{\delta}}\rangle = |iu_{m\mathbf{k},\delta}^{\varphi}\rangle$$

$$E_{\gamma\delta}^{\varphi^*\tau_{\kappa\beta}} = -iE_{\gamma}^{\mathcal{E}^*_{\delta}\tau_{\kappa\beta}} - iE_{\delta}^{\mathcal{E}^*_{\gamma}\tau_{\kappa\beta}}$$

$$New \text{ Objects}$$

$$E_{\gamma}^{\mathcal{E}_{\delta}^{*}\tau_{\kappa\beta}} = s \int_{\mathrm{BZ}} [d^{3}k] \sum_{m} E_{m\mathbf{k},\gamma}^{\mathcal{E}_{\delta}^{*}\tau_{\kappa\beta}} + \frac{1}{2} \int_{\Omega} \int \underbrace{K_{\gamma}(\mathbf{r},\mathbf{r}')}_{n} n^{\mathcal{E}_{\delta}}(\mathbf{r}) n^{\tau_{\kappa\beta}}(\mathbf{r}') d^{3}r d^{3}r'$$

 $E_{m\mathbf{k},\gamma}^{\mathcal{E}^*_{\delta}\tau_{\kappa\beta}} = \langle u_{m\mathbf{k}}^{\mathcal{E}_{\delta}} | \partial_{\gamma} \hat{H}_{\mathbf{k}}^{(0)} | u_{m\mathbf{k}}^{\tau_{\kappa\beta}} \rangle + \langle u_{m\mathbf{k}}^{\mathcal{E}_{\delta}} | \partial_{\gamma} \hat{Q}_{\mathbf{k}} \hat{H}_{\mathbf{k}}^{\tau_{\kappa\beta}} | u_{m\mathbf{k}}^{(0)} \rangle + \langle u_{m\mathbf{k}}^{(0)} | V^{\mathcal{E}_{\delta}} \partial_{\gamma} \hat{Q}_{\mathbf{k}} | u_{m\mathbf{k}}^{\tau_{\kappa\beta}} \rangle + \langle u_{m\mathbf{k}}^{\mathcal{E}_{\delta}} | u_{m\mathbf{k}}^{\tau_{\kappa\beta}} \rangle + \langle u_{m\mathbf{k}}^{\mathcal{E}_{\delta}} | u_{m\mathbf{k}}^{\tau_{\kappa\beta}} \rangle$

M. Royo and M. Stengel, PRX (accepted)

Long-range interatomic forces

$$\Phi_{\kappa\alpha,\kappa'\beta}^{\mathbf{q},\mathrm{DQ}} = -i\frac{4\pi}{2\Omega}\frac{(\mathbf{q}\cdot\mathbf{Z}_{\kappa}^{*})_{\alpha}(\mathbf{q}\,\mathbf{q}\cdot\mathbf{Q}_{\kappa'}^{*})_{\beta}}{\mathbf{q}\cdot\boldsymbol{\epsilon}\cdot\mathbf{q}} + i\frac{4\pi}{2\Omega}\frac{(\mathbf{q}\,\mathbf{q}\cdot\mathbf{Q}_{\kappa}^{*})_{\alpha}(\mathbf{q}\cdot\mathbf{Z}_{\kappa'}^{*})_{\beta}}{\mathbf{q}\cdot\boldsymbol{\epsilon}\cdot\mathbf{q}}, \qquad \mathbf{\textcircled{S}} \quad \mathbf{\textcircled{S}} \quad \mathbf{\swarrow} \quad \mathbf{\swarrow} \quad \mathbf{\swarrow} \quad \mathbf{\swarrow} \quad \mathbf{\swarrow} \quad \mathbf{\swarrow} \quad \mathbf{\varUpsilon} \quad \mathbf$$

Frozen-ion piezoelectric tensor (Martin's theory, 1972)

$$\bar{e}_{\alpha\beta\gamma} = \frac{\partial P_{\alpha}}{\partial \varepsilon_{\beta\gamma}}\Big|_{\rm FI} \qquad \qquad \bar{e}_{\alpha\beta\gamma} + \bar{e}_{\gamma\beta\alpha} = \frac{1}{\Omega} \sum_{\kappa} Q^{(2,\alpha\gamma)}_{\kappa\beta}$$

I LONG-WAVE DFPT APPROACH TO SPATIAL DISPERSION

Flexoelectric Tensor

Dynamical Quadrupole Tensor

II NUMERICAL RESULTS Method validation Convergence study

IIIIMPLEMENTATION DETAILSIVCONCLUSIONS AND OUTLOOK

Quadrupoles testcase: Tetragonal PbTiO₃

All calculations are performed using the LDA and norm conserving PSPs

Ecut=70 Ha and 8x8x8 MP k-points

	$\kappa = Pb$	$\kappa = Ti$	$\kappa = O_1$	$\kappa = O_2$	$\kappa = O_3$
$Q^{(2,11)}_{\kappa 3}$	2.264	-3.545	2.884	-4.186	0.406
$Q^{(2,22)}_{\kappa 3}$	2.264	-3.545	-4.186	2.884	0.406
$Q^{(2,31)}_{\kappa 1}$	-0.062	-3.799	3.123	-1.115	-1.784
$Q^{(2,32)}_{\kappa 2}$	-0.062	-3.799	-1.115	3.123	-1.784
$Q_{\kappa3}^{(2,33)}$	1.240	-0.195	2.027	2.027	6.653

TABLE I. Quadrupole moments in $e \cdot Bohr$ of $PbTiO_3$.

Recall: Martin's 1972 formula

$$e_{\alpha\beta\gamma}^{P} = v_{0}^{-1} \overline{\sum}_{K} \left[\sum_{\delta} e_{K\alpha\delta}^{*} \Gamma_{K\delta\beta\gamma} - Q_{K\gamma\alpha\beta} + Q_{K\beta\gamma\alpha} \right] - \frac{1}{2} \left(Q_{K\alpha\beta\gamma} - Q_{K\gamma\alpha\beta} + Q_{K\beta\gamma\alpha} \right) \right].$$

Clamped-ion Piezoelectric Tensor

	$e_{113} = e_{223}$	$e_{311} = e_{322}$	e_{333}
Strain	0.1547	0.3617	-0.8345
Quadrupoles	0.1548	0.3614	-0.8347

TABLE II. Clamped-ion piezoelectric coefficients (in C/m²) of PbTiO₃

LONG-WAVE DFPT: NUMERICAL RESULTS

Flexoelectric tensor: Cubic materials

Testcase 1: Isolated noble gas atoms

	$\mu_{ m L}$	$\mu_{ m T}$	$\mu_{ m S}$ ()	$\times 10^{-4})$
He	$-0.479 \ (-0.479^{a})$	$-0.479 \ (-0.479^{a})$	-0.08	(-0.08^{a})
Ar	$-4.821 \ (-4.813^{a})$	$-4.823(-4.820^{a})$	-1	(-10^{a})
Kr	$-6.471 \ (-6.474^{a})$	$-6.477 (-6.476^{a})$	-4	(-20^{a})

() values obtained via numerical derivation in **q**

A. Schiaffino et al. PRB 99, 085107 (2019)

TABLE III. Flexoelectric coefficients (pC/m) of noble-gas atom systems. ^a Ref. [3]

Testcase 2: Real materials

A.Schiaffino et al.	
PRB 99, 085107 (2019)	Ī

Stengel PRB 90, 201112(R) (2014)

	$\mu_{ m L}$	$\mu_{ m T}$	$\mu_{ m S}$
Si (this work)	-1.4114	-1.0491	-0.1895
→ Ref. 3	-1.4110	-1.0493	-0.1894
$SrTiO_3$ (this work)	-0.8848	-0.8262	-0.0823
Ref. 3	-0.8851	-0.8260	-0.0823
Ref. 6	-0.883	-0.825	-0.082

TABLE V. Flexoelectric coefficients (nC/m) of Si and SrTiO₃.

Miquel Royo Valls

Louvain-la-Neuve, May 2019

LONG-WAVE DEPT: NUMERICAL RESULTS

SYSTEM: Silicon

All calculations are performed using the LDA and norm conserving PSPs

THE SPATIAL-DISPERSION TENSORS CALCULATION REQUIRES A COMPUTATIONAL EFFORT COMPARABLE TO THE CALCULATION OF OTHER STANDARD LINEAR-RESPONSE QUANTITIES

I LONG-WAVE DFPT APPROACH TO SPATIAL DISPERSION

Flexoelectric Tensor Dynamical Quadrupole Tensor

II NUMERICAL RESULTS Method validation

Convergence study

IIIIMPLEMENTATION DETAILSIVCONCLUSIONS AND OUTLOOK

I ONG-WAVE DEPT: IMPLEMENTATION DETAILS

New objects to implement

$$K_{\gamma}(\mathbf{G},\mathbf{G}') = -8\pi G_{\gamma} \frac{\delta_{\mathbf{G}\mathbf{G}'}}{G^4}$$

hartredg (54_spacepar/m_spacepar.F90)

$$\hat{H}_{\mathbf{k},\gamma}^{\tau_{\kappa\beta}} = V_{\gamma}^{\mathrm{loc},\tau_{\kappa\beta}} + V_{\mathbf{k},\gamma}^{\mathrm{sep},\tau_{\kappa\beta}}$$

dfpt_vlocaldq (67_common/m_mklocl.F90) nonlop (choice=22) (66_nonlocal/m_nonlop.F90)

$$\hat{H}_{\mathbf{k},\gamma\delta}^{(\beta)} = \hat{T}_{\mathbf{k},\gamma\delta}^{(\beta)} + V_{\gamma\delta}^{\mathrm{loc},\,(\beta)} + V_{\gamma\delta}^{\mathrm{sep},(\beta)} + \hat{V}_{\mathbf{k},\gamma\delta}^{\mathrm{sep},(\beta)} + \hat{V}_{\delta\gamma}^{\mathrm{H0},(\beta)}$$

mkkin_metdqdq (56_recipspace/m_kg.F90) dfpt_vlocaldqdq (67_common/m_mklocl.F90) **nonlop (choice=33)** (66_nonlocal/m_nonlop.F90)

orbital **B**-field

Miquel Royo Valls

# Crystalline	silicon: computation of th	e Quadrupole
# and CI FxE	Tensors	

ndtset	5	
#Set 1: Grou	Ind state self-consistency	/
getwfk1 kptopt1 nqpt1 tolvrs1	0 1 0 1.0d-18	
#Sat 2. Ras	onse function calculation	h

#Set 2: Response function calculation of d/dk

iscf2	-3
kptopt2	2
rfelfd2	2
tolwfr2	1.0d-22
rfdir2	111

#Set 3: Response function calculation of d2/dkdk

2
-3
2
1
1.0d-22

#Set 4 : Response function calculation of Q=0 phonons, # electric field and strain perturbations

getddk4	2
kptopt4	2
rfelfd4	3
rfphon4	1
rfatpol4	12
rfdir4	111
tolvrs4	1.0d-10
prepalw4	1 # Deactivates symmetries for the lw routines

#Set 5: Long-wave magnitudes calculation

optdriver5	10	# Activates long-wave driver
kptopt5	2	-
get1wf5	4	
get1den5	4	
getddk5	2	
getdkdk5	3	
lw_qdrpl5	1	# Calculate Quadrupoles
lw_flexo5	2	# Calculate CI flexoelectric tenso

#Common input variables

...

getwfk	1
useylm	1
nqpt	1
qpt	0.0E+00 0.0E+00 0.0E+00

Example of output files

abi_out

Quadrupole tensor, in cartesian coordinates,									
atom	atddir	efidir	qgrdir	real part	imaginary part				
1	1	1	1	-0.000000044	0.0000000000				
2	1	1	1	0.000000044	0.0000000000				
1	2	1	1	0.0000000000	0.0000000000				
1	2	2	1	-0.000000021	0.0000000000				
2	2	2	1	0.000000022	0.0000000000				
1	3	2	1	13.3682664286	0.0000000000				
2	3	2	1	-13.3682664284	0.0000000000				
1	1	3	1	-0.000000023	0.0000000000				

Electronic flexoelectric tensor, in cartesian coordinates,

				· ·	
efidir	qgrdir	strdir1	strdir2	real part	imaginary part
1	1	1	1	-0.4661642508	0.0000000000
2	1	1	1	-0.0000000000	0.0000000000
3	1	1	1	-0.0000000000	0.0000000000
1	2	1	1	-0.0000000000	0.0000000000
2	2	1	1	-0.3465045498	0.0000000000
3	2	1	1	0.0000000000	0.0000000000
1	3	1	1	-0.0000000000	0.0000000000
2	3	1	1	0.0000000000	0.0000000000
3	3	1	1	-0.3465045498	0.0000000000

_O_DS5_DDB

**** Database of total energy derivatives **** Number of data blocks= 1

3rd derivatives - # elements : 216 gpt 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0 1 10 0.0000000000000D+00 0.22644265123610D-14 1 10 0.000000000000D+00 0.58234827336192D+02 1 10 0.000000000000D+00 -0.29456056346091D+02 1 10 0.0000000000000D+00 -0.29063615520488D+02 1 10 0.000000000000D+00 -0.24355993235786D+00 1 10 0.0000000000000D+00 -0.10841168799945D-14 1 10 0.000000000000D+00 0.26583336681518D+00 1 10 0.0000000000000D+00 0.24656233568811D+03 2 2 2 1 3 2 1 10 0.000000000000D+00 0.35339045543433D+00 2 1

. . . .

...

LONG-WAVE DFPT: IMPLEMENTATION DETAILS

State of the implementation

NOT YET MERGED WITH THE TRUNK

Current limitations:

- Perturbations symmetries deactivated
- LDA exclusive
- Not adapted for non-linear core corrections
- kptopt ≠ 1
- useylm = 1

TO DO

I LONG-WAVE DFPT APPROACH TO SPATIAL DISPERSION

Flexoelectric Tensor Dynamical Quadrupole Tenso

II NUMERICAL RESULTS Method validation Convergence study

III IMPLEMENTATION DETAILS

IV CONCLUSIONS AND OUTLOOK

- CI FxE and quadrupole tensor from a multi-dataset ABINIT run
- No *new* ddq response functions required
- Little computational cost
- Developing of full FxE tensor (lattice and mixed contribs.)
- Other spatial dispersion properties (natural optical/acoustical activity)

THANK YOU!

M. Royo and M. Stengel, Phys. Rev. X (accepted), arXiv:1812.05935