

The Multibinit project

AbiDev 2019

 $\dagger Jordan \ Bieder, Alexande Martin, Xu He, Marcus Schmitt, Nicole Helbig and Philippe Ghosez$

†PhyTheMa - ULG CESAM / Q-MAT

May 21st, 2019

Motivations

Understanding and engineering functional properties often require undestanding materials at the atomic scale.

- From *ab-initio* data to second-principles.
- Integrate some degress of freedom.
- Access relevant properties at operating conditions from different length-scales.

J. Bieder

. .

J. Bieder

22

<mark>)</mark> •

.

. .

J. Bieder

. .

. .

••

J. Bieder

.

.

22

J. Bieder

.

. .

••

J. Bieder

Multibinit in the package

Multibinit

LIÈGE université

- Multibinit is a new executable included in the *src*/98_*main/multibinit*
- New directory *src*/78_*effpot* have been created with many new files !
 - New directory structure is planned to better organize the code
 - Split abastract layer from each potential
 - Split the mover from the potentials
- New input have been created (mix between anaddb and ABINIT)
- The parsing of the XML file is done with Fortran or LibXML (more efficient...)
- MPI Parallelization
- Hybrid Monte Carlo is implemented
- Some of abinit movers are used
- New automatic tests in the version 8
- New documentation with a topic on the website.
- New tutorial to learn how to use multibinit (lattice and spin)

2

Basic Procedure

- Express energy as low order Taylor expansion
 - Use hight-symmetry reference structure
 - Variables: local modes and strains
- Determine coefficients from a limited number of DFT calculations
- Resulting energy expansion allows for finite temperature Monte Carlo

Successful results already for many oxide systems. However identifying a small set of degrees of fredom is often difficult.

We need a general description of the energetics of all the atomic degress of freedom

K. Rabe and J. Joannopoulos, PRL 59, 570 (1987); PRB 36, 6631 (1987)
 W. Zhong et al., PRL 73, 1861 (1994); PRB 52, 6301 (1995)

J. Bieder

Energy changes around reference structure due to distortions

 $E_{eff}(\{\mathbf{u}_i\},\eta) = E_{\rho}(\{\mathbf{u}_i\}) + E_{s}(\eta) + E_{s\rho}(\{\mathbf{u}_i\},\eta)$

J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

AbiDev 2019, 2019/05/21

. .

<

J. Bieder

Energy changes around reference structure due to distortions

$$E_{eff}(\{\mathbf{u}_i\}, \eta) = E_p(\{\mathbf{u}_i\}) + E_s(\eta) + E_{sp}(\{\mathbf{u}_i\}, \eta)$$
Energy change due to
strain only
$$E_s^{Harm}(\eta)$$

<

J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

J. Bieder

Energy changes around reference structure due to distortions

<

J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

Energy changes around reference structure due to distortions

 \geq

J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

AbiDev 2019, 2019/05/21

••

J. Bieder

Energy changes around reference structure due to distortions

<

J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

AbiDev 2019, 2019/05/21

.

Energy changes around reference structure due to distortions

Same framework as H_{eff} but includes all-atomic degrees of freedom. J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

2

CESAM 3. Lattice Effective Hamiltonians

Phonon term
$$E_p({\mathbf{u}_i}) = E_p^{Harm}({\mathbf{u}_i}) + E_p^{Anharm}({\mathbf{u}_i})$$

Taylor development around the reference structure

$$E_{p}(\{\mathbf{u}_{i}\}) = \underbrace{\frac{1}{2} \sum_{i \alpha j \beta} \mathcal{K}_{i \alpha j \beta}^{(2)} u_{i \alpha} u_{j \beta}}_{\text{Harmonic terms}} + \underbrace{\frac{1}{6} \sum_{i \alpha j \beta k \gamma} \mathcal{K}_{i \alpha j \beta k \gamma}^{(3)} u_{i \alpha} u_{j \beta} u_{k \gamma} + \mathcal{O}(u^{4})}_{\text{Anharmonic terms}}$$

with $K_{i\alpha j\beta \dots}^n = \left. \frac{\partial^n E_{eff}}{\partial u_{i\alpha} \partial u_{j\beta} \dots} \right|_{\eta=0}$.

- Must comply the Acoustic Sum Rule ightarrow difficulte to enforce for n>2
- Use displacement differences \rightarrow ASR satisfied by construction

$$E_{\mathsf{Harm}}\left(\{u_i\}
ight) = rac{1}{2}\sum_{\substack{i,j,k,h\lpha,eta}} ilde{\kappa}_{ijlpha kheta}^{(2)}(u_{ilpha} - u_{jlpha})(u_{keta} - u_{heta})$$

J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

AbiDev 2019, 2019/05/21

. . .

••

J. Bieder

$$E_{p}^{Harm} \left(\left\{ \mathbf{u}_{i} \right\} \right) = E_{p,SR}^{Harm} \left(\left\{ \mathbf{u}_{i} \right\} \right) + E_{p,LR}^{Harm} \left\{ \left\{ \mathbf{u}_{i} \right\} \right)$$

$$E_{p}^{Harm} \left(\left\{ \mathbf{u}_{i} \right\} \right) = \frac{1}{2} \sum_{i\alpha j\beta} K_{i\alpha j\beta}^{(2)} u_{i\alpha} u_{j\beta} = \frac{1}{2} \sum_{i\alpha j\beta} \left(S_{i\alpha j\beta} + L_{i\alpha j\beta} \right) u_{i\alpha} u_{j\beta}$$

$$= \frac{1}{2} \sum_{i \in SC} u_{i\alpha} \sum_{j \in SR} S_{i\alpha j\beta} u_{j\beta} + \frac{1}{2} \sum_{i \in SC} u_{i\alpha} \sum_{j \in SC} \left(\sum_{\beta} L_{i\alpha j\beta}(b) \right) \underbrace{u_{j\beta}^{b}}_{L_{i\alpha j\beta}(\mathbf{q}=\mathbf{0})}$$

<mark>| |</mark>

| J. Bieder

00

$E_p^{Anharm}\left(\left\{\mathbf{u}_i\right\}\right)$

- Anharmonicity degree : chose from maximum order: 3, 4, 5, 6,...
- For each order build the possible terms

$$E_{\rho}^{(n)}(\{\mathbf{u}_{i}\}) = \frac{1}{!n} \sum_{\substack{i,j,k,l,m,n,\cdots \\ \alpha,\beta,\gamma,\cdots}} \mathcal{K}_{ijklmn}^{(n)\alpha\beta\gamma}(u_{i\alpha} - u_{j\alpha})(u_{k\beta} - u_{l\beta})(u_{m\gamma} - u_{n\gamma})\cdots$$

- ASR enforces by using differences
- Too many terms for "hight" orders
- Use symmetries to reduce de number of coefficients

 $E_p^{Anharm}(\{\mathbf{u}_i\})$ Symmetry considerations: "Symmetry adapted terms"

The operations of the space group can generate a collection of symmetry related terms which reduces the number of *independent* parameters. In practice :

- Define range or cutoff radius
- Build all terms within this range
- Apply all symmetries to find relations between terms :

 $(u_{0Bx} - u_{0O3x})^2 (u_{0By} - u_{0O3y})^2 + \frac{\pi}{2}$ rotation about the y-axis transforms to $(u_{0Bz} - u_{0O1z})^2 (u_{0By} - u_{0O1y})^2 \rightarrow 15$ independent parameters (1st nearest neighbors at 3rd and 4th order in *u*) for the anharmonic phonon part.

Y

Phonon term $E_p({\mathbf{u}_i}) = E_p^{Harm}({\mathbf{u}_i}) + E_p^{Anharm}({\mathbf{u}_i})$

Harmonic terms

- $K^{(2)}$ obtained by DFPT as the back-Fourier-transformed dynamical matrix
- Remove dipole-dipole interaction in real space to obtain the SR only.
- Use ewald summation to compute the exact dipole-dipole interaction.
- \Rightarrow Harmonic terms exact by construction and include all phonon branches

Phonon term $E_p({\mathbf{u}_i}) = E_p^{Harm}({\mathbf{u}_i}) + E_p^{Anharm}({\mathbf{u}_i})$

Harmonic terms

- $K^{(2)}$ obtained by DFPT as the back-Fourier-transformed dynamical matrix
- Remove dipole-dipole interaction in real space to obtain the SR only.
- Use ewald summation to compute the exact dipole-dipole interaction.
- \Rightarrow Harmonic terms exact by construction and include all phonon branches

Anharmonic terms

- Displacement differences expression allows for an unconstrained optimization of $\tilde{K}^{(n)}$
- Determined by fitting key quantites to limited number of DFT calculations (training set)

00

Strain term $E_{s}(\eta)$

Taylor development around the reference structure

$$E_{s}(\eta) = \frac{N}{2} \sum_{ab} C_{ab}^{(2)} \eta_{a} \eta_{b} + \frac{N}{6} \sum_{abc} C_{abx}^{(3)} \eta_{a} \eta_{b} \eta_{c} + \mathcal{O}(\eta^{4})$$
with $C_{ab...}^{(m)} = \frac{1}{N} \frac{\partial^{m} E_{eff}}{\partial \eta_{a} \partial \eta_{b} \cdots} \Big|_{u_{i}=0}$

• Harmonic term calculated directly : the frozen ion elastic constants (DFPT)

<

• Anharmonic terms : in practice not required for semi-quantitative results

J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

00

LIÈGE université 3. Lattice Effective Hamiltonians

Strain-Phonon coupling $E_{sp}(\{u_i\},\eta)$

Taylor development also subject to ASR

$$E_{sp}\left(\left\{ u_{i}
ight\} ,\eta
ight) =% \left(\left\{ u_{i}
ight\} ,\eta
ight) =% \left(\left\{ u_{i}
ight\} ,\eta
ight) =\left(\left\{ u_{i}
ight) =\left(\left\{ u_{i}
ight\} ,\eta
ight) =\left(\left\{ u_{i}
ight\} ,\eta
ight) =\left(\left\{ u_{i}
ight) =\left(\left\{ u_{i}
ight\} ,\eta
ight\right)$$

Forces at homogeneous strain

Change in force csts with strain

- The $\Lambda^{(m,n)}$ must comply with a set of ASRs
- Use displacement differences

$$\begin{split} E_{sp}\left(\left\{u_{i}\right\},\eta\right) &= \frac{1}{2}\sum_{a}\sum_{ij\alpha}\Lambda_{ai\alpha}^{(1,1)}\eta_{a}\left(u_{i\alpha}-u_{j\alpha}\right) \\ &+ \frac{1}{6}\sum_{a}\sum_{ij\alpha kh\beta}\Lambda_{ai\alpha j\beta}^{(1,2)}\eta_{a}\left(u_{i\alpha}-u_{j\alpha}\right)\left(u_{k\beta}-u_{h\beta}\right)+\dots \end{split}$$

J. Wojdel et al., J. Phys. Condens. Matter 25 (2013) 305401

Fitting anhamonic terms

Fit is performed on both Phonon and Strain-phonon terms.

• For a set (*TS*) of configurations (*s*) from DFT calculations, we fit with least squares method, the goal function is defined as:

$$G[\lambda_{\rho}, TS] = \frac{1}{M_1} \sum_{s,\alpha,j} \left(F_{\alpha_j}^{TS}(s) - F_{\alpha_j}[\lambda_{\rho}](s) \right)^2 + \frac{1}{M_2} \sum_{s,j} \Omega^2(s) \left(\sigma_j^{TS}(s) - \sigma_j[\lambda_{\rho}](s) \right)^2$$

• where
$$\Omega(s) = ig(V(s)\sqrt(N)ig)^{(-1/3)}$$

- The goal function has to satisfy $\frac{\partial G[\lambda_p, TS]}{\partial \lambda_\mu} = 0 \quad \forall \mu \text{ and } \frac{\partial^2 G[\lambda_p, TS]}{\partial \lambda_\mu \partial \lambda_\nu} \ge 0 \quad \forall \mu \nu$
- We solve the system of p linear equations in order to get the set of coefficients λ_p

2

J. Bieder

```
prt_model = 1
#
#Inputs for the fitted coefficients
# _ _ _ _
fit_coeff = 1
fit_generateCoeff = 1
fit_rangePower = 3 4
                        # Range for the powers of the polynomial (default 3
   to 4 )
fit_ncoeff = 7
                        # Number of coefficients to consider for the fit
fit_cutoff = 8
                        # Cutoff for the interactions
fit_anhaStrain = 0
fit_SPCoupling = 1
ts_option = 1
```


00

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

<

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

 \leq

• Mean Standard Deviation of the Energy with 1 Coeff: 284.70 meV/f.u.

00

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

8

• Mean Standard Deviation of the Energy with 5 Coeffs: 21.28 meV/f.u.

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

 \leq

• Mean Standard Deviation of the Energy with 10 Coeffs: 12.75 meV/f.u.

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

 \leq

• Mean Standard Deviation of the Energy with 20 Coeffs: 19.37 meV/f.u.

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

 \leq

• Mean Standard Deviation of the Energy with 50 Coeffs: 19.03 meV/f.u.

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

 \leq

• Mean Standard Deviation of the Energy with 100 Coeffs: 6.46 meV/f.u.

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

• Mean Standard Deviation of the Energy with 175 Coeffs: 4.45 meV/f.u.

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

• Mean Standard Deviation of the Energy with 175 Coeffs: 4.45 meV/f.u.

Example of CaTiO₃ cubic phase

• Mean Standard Deviation of the Energy with only Harmonic: 250.58 meV/f.u.

• Mean Standard Deviation of the Energy with 175 Coeffs: 4.45 meV/f.u.

Bounding the potential

- If the highest order is odd
- If the highest order is even and the coefficient negative
- \Rightarrow The potential might be unstable !!
 - Add artifical physics with maths to bound the process.
- \rightarrow See M. Schmitt presentation.

Analyzing the results $_{q(Agate)}$

- Visualize the trajectory
- Perform all "MD" analysis (PDF, T, P, V, ...)
- Extract phonons at finite temperature (with a-TDEP see F. Bottin talk)
- Project on modes and follow phase transitions

	qTdep			- 0 ×			
t37_HIST.nc			qTdep		_ 0 ×		
Supercell	t37_HIST.nc				qTdep	- 0)	
Trajectory (101 step(s))	Supercell		t37_HIST.nc		Band Structure		
First time: 0	Unit cell		Supercell				
Last time 100 🗘	Lattice		Unit cell		600	-	
Step 1 0	Lattice scaling 14.852957 14.852957 14.852957		Options				
Temperature 495,05K	a 0.5 0	0	Order expansion 2 *		500		
Multiplicity	b 0 0.5	0	radius cutoff for order 2 7.426	48 bohr +	400		
2 0 0	c 0 0	0.5			1-		
0 2 0	Space group: 221: Pm-3m		DOS smearing 4.5er	6 Ha +	300		
0 0 2	Atomic description		DOS q-point grid 2.2.2		8	-	
	Type x (red.) y (re	sd.) z (red.)*	Use ideal positions instead of	of average positions		4	
	157 0 0	0	Mode debug		100	>	
	2 10 0.5 0.5	0.5	Energy unit Jon +				
Unit cell	40 05 0	0.5			• F		
Options					г х м г	R	
kpt=2.9702 E=5.13544	Options				k-path		
	kpt=2.55121 E=4.06321				√Apply mOpen X <u>C</u> k	sie 🔒 Sive	
			kpt=0.177122 E=717.256				

 \leq

Lattice part

LIÈGE université

- Multibinit is able to make interface between first principles calculations and mesoscopic simulations for «any» system
- Automatic construction of the models with harmonic and anharmonic contributions from first principles
- Automatic bound process

6. Conclusion

- Tool able to run dynamics (Monte Carlo or Molecular dynamics)
- Good tools for result analysis and post-processing of data ((q)Agate)
- New ionmov in abinit to generate the training set

Miscellanous

6

LIÈGE université

- Spin potential available (X. He talk)
- Spin dynamics available (X. He Talk)
- Spin-lattice coupling (N. Helbig)

Conclusion

- Effective Hamiltonian WIP (W. Lafargue-dit-Hauret poster)
- Coupling with electronic potential (M. Schmitt and previous talks)
- Common data structure for ease of use and interfacing

Thank You !

- ULiège : Marcus Schmitt, He Xu, Nicole Helbig, Fabio Ricci, Matthieu Verstraete, Eric Bousquet, Philippe Ghosez
- UCLouvain : Gian-Marco Rignanese, Xavier Gonze
- Others : Alexandre Martin, Sergeï Prokhorenko, Andrés Camilo García Castro

Interactions also with :

- USantander : Javier Junquera and Pablo García-Fernández
- LIST : Jorge Íñiguez

