Electron-Phonon Coupling in Naphthalene

Florian Brown-Altvater¹ <u>Gabriel Antonius</u>² Tonatiuh Rangel¹ Matteo Giantomassi³ Claudia Draxl⁴ Xavier Gonze³ Steven G. Louie⁵ Jeffrey B. Neaton¹

9th international Abinit developer workshop, May 2019

1 Introduction

- 2 Recent implementation in Abinit
- **3** Temperature dependence of the band gap
- 4 Electron and hole mobilities
- 5 Self-consistency in the self-energy

Naphthalene crystals

- Organic molecular crystal
- Good electrical conductivity
 - Solar cell
 - Field-effect transistors

- Zero-point renormalization (ZPR)
- Temperature-dependent band gap
- Electron and hole mobilities

Computing the electron-phonon self-energy

Fan self-energy

$$\Sigma_{\mathbf{k}n}^{\mathsf{Fan}}(T,\boldsymbol{\omega}) = \sum_{\mathbf{q}\nu} \sum_{m} |g_{mn\nu}(\mathbf{k},\mathbf{q})|^2 \left[\frac{n_{\mathbf{q}\nu}(T) + f_{\mathbf{k}+\mathbf{q}m}(T)}{\varepsilon - \varepsilon_{\mathbf{k}+\mathbf{q}m} + \hbar\omega_{\mathbf{q}\nu} + i\eta} + \frac{n_{\mathbf{q}\nu}(T) + 1 - f_{\mathbf{k}+\mathbf{q}m}(T)}{\varepsilon - \varepsilon_{\mathbf{k}+\mathbf{q}m} - \hbar\omega_{\mathbf{q}\nu} + i\eta} \right]$$

Separation into lower bands / higher bands contributions

$$\Sigma(T, \boldsymbol{\omega}) = \sum_{\mathbf{q}\nu} \sum_{m \leq M} \Sigma_{\mathbf{q}\nu, m}(T, \boldsymbol{\omega}) + \sum_{\mathbf{q}\nu} \sum_{m > M} \Sigma_{\mathbf{q}\nu, m}^{\text{Static}}(T, \boldsymbol{\varepsilon}_{\mathbf{k}n}^{0})$$

Double-grid technique

$$\Sigma(T, \boldsymbol{\omega}) = \sum_{\mathbf{q}\nu}^{\text{fine}} \sum_{m \leq M} \Sigma_{\mathbf{q}\nu, m}(T, \boldsymbol{\omega}) + \sum_{\mathbf{q}\nu}^{\text{coarse}} \sum_{m > M} \Sigma_{\mathbf{q}\nu, m}(T, \boldsymbol{\varepsilon}_{\mathbf{k}n}^{0})$$

Interpolating the phonon potential in polar materials

Long-range part of the phonon potential

$$V^{L}_{\kappa j}(\mathbf{q},\mathbf{r}) = i \frac{4\pi}{\Omega} \sum_{\mathbf{G}} \frac{e^{i(\mathbf{q}+\mathbf{G})\cdot(\mathbf{r}-\mathbf{R}_{\kappa})}(\mathbf{q}+\mathbf{G})_{j'} \cdot Z^{*}_{\kappa,j'j}}{(\mathbf{q}+\mathbf{G})\cdot\boldsymbol{\varepsilon}^{\infty}\cdot(\mathbf{q}+\mathbf{G})}$$

Fourier interpolation of the short-range part of the phonon potential

$$W^{S}_{\kappa j}(\mathbf{r}-\mathbf{R}_{l}) = \sum_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{R}_{l}} \Big[V_{\kappa j}(\mathbf{q},\mathbf{r}) - V^{L}_{\kappa j}(\mathbf{q},\mathbf{r}) \Big]$$

The long-range part is then added to the interpolated potential

$$V_{\kappa j}(\tilde{\mathbf{q}},\mathbf{r}) \approx \sum_{l} W^{S}_{\kappa j}(\mathbf{r}-\mathbf{R}_{l})e^{-i\tilde{\mathbf{q}}\cdot\mathbf{R}_{l}} + V^{L}_{\kappa j}(\tilde{\mathbf{q}},\mathbf{r})$$

Workflow

Computation	Executable	Input variables	Files	
Eigenvalues at \mathbf{k} and at $\mathbf{k} + \mathbf{q}$	abinit	iscf=-2	EIG.nc	
DFPT calculation of all perturbations	abinit	rfphon=1	POTx	
(atoms + electric field)	abinit	11phon-1	DDB.nc	
		rfphon=1		
Non-self-consistent DFPT for upper	abinit	ieig2rf=5	EIGR2D.nc	
bands contribution		iscf=-2		
	-			
Merging of phonon potential	mrgdv		DVDB	
Interpolation of phonon potential	abinit	eph_task=5	DVDB	
Merging of dynamical matrices	mrgddb		DDB	
Interpolation of dynamical matrices	anaddb	prtddb=1	DDB.nc	
El-ph coupling matrix elements	abinit	eph_task=2	GKK.nc	
Self-energy	ElectronPhonon-		EP.nc	
Self-ellergy	Coupling			

Temperature dependence of the band gap

Band gap renormalization

A word of warning

Large errors in the interpolated potential with a 2 × 4 × 2 coarse q-point grid

Electrical mobility

Approximating the mobility

Using the density of states $D(\varepsilon)$

$$\mu_{\alpha}^{\mathrm{e,h}} \approx \frac{-e}{\rho_{\mathrm{e,h}}} \int d\varepsilon D(\varepsilon) f'(\varepsilon) v_{\alpha}^{2}(\varepsilon) \tau(\varepsilon)$$

Energy-resolved squared velocity

$$v_{\alpha}^{2}(\varepsilon) = \frac{1}{D(\varepsilon)} \sum_{n} \int \frac{d\mathbf{k}}{\Omega_{\mathrm{BZ}}} |v_{n\mathbf{k},\alpha}|^{2} \delta(\varepsilon - \varepsilon_{n\mathbf{k}})$$

Energy-resolved lifetime

$$\tau(\varepsilon) = \frac{1}{D(\varepsilon)} \sum_{n} \int \frac{d\mathbf{k}}{\Omega_{\rm BZ}} \tau_{n\mathbf{k}} \delta(\varepsilon - \varepsilon_{n\mathbf{k}})$$

Approximating the mobility

Self-consistency in the self-energy

Finding the quasiparticle energy

On-the-mass-shell approximation

$$\boldsymbol{\varepsilon}_{\mathbf{k}n}(T) = \boldsymbol{\varepsilon}_{\mathbf{k}n}^0 + \Re \Sigma_{\mathbf{k}n}(\boldsymbol{\varepsilon}_{\mathbf{k}n}^0, T)$$

Quasiparticle energy

$$\varepsilon_{\mathbf{k}n}(T) = \varepsilon_{\mathbf{k}n}^0 + \Re \Sigma_{\mathbf{k}n}(\varepsilon_{\mathbf{k}n}, T)$$

Spectral function

$$A_{\mathbf{k}n}(\boldsymbol{\omega},T) = \frac{1}{\pi} \Im G_{\mathbf{k}n}(\boldsymbol{\omega},T)$$
$$= \frac{1}{\pi} \frac{|\Im \Sigma_{\mathbf{k}n}(\boldsymbol{\omega},T)|}{[\boldsymbol{\omega} - \boldsymbol{\varepsilon}^0 - \Re \Sigma_{\mathbf{k}n}(\boldsymbol{\omega},T)]^2 + \Im \Sigma_{\mathbf{k}n}(\boldsymbol{\omega},T)^2}$$

Self-consistent scheme

The self-energy is largely k-independent

Iterative computation of the self-energy at $\boldsymbol{\Gamma}$

$$\varepsilon_{n\mathbf{k}}^{1} = \varepsilon_{n\mathbf{k}}^{0} + \Re \left[\Sigma_{n\Gamma} \left\{ \varepsilon_{n\mathbf{k}}^{0} - \varepsilon_{m\mathbf{k}+\mathbf{q}}^{0} \pm \omega_{v\mathbf{q}} \right\} \right] \\ \varepsilon_{n\mathbf{k}}^{2} = \varepsilon_{n\mathbf{k}}^{0} + \Re \left[\Sigma_{n\Gamma} \left\{ \varepsilon_{n\mathbf{k}}^{1} - \varepsilon_{m\mathbf{k}+\mathbf{q}}^{1} \pm \omega_{v\mathbf{q}} \right\} \right] \\ \dots$$

$$\boldsymbol{\varepsilon}_{n\mathbf{k}}^{i} = \boldsymbol{\varepsilon}_{n\mathbf{k}}^{0} + \Re \big[\Sigma_{n\Gamma} (\{ \boldsymbol{\varepsilon}_{n\mathbf{k}}^{i-1} - \boldsymbol{\varepsilon}_{m\mathbf{k}+\mathbf{q}}^{i-1} \pm \boldsymbol{\omega}_{v\mathbf{q}} \}) \big],$$

Self-consistent scheme

Effect of self-consistency on the mobility

Effect of self-consistency on the mobility

	Mobility at 295K					
	hole			electron		
	$\mu_a^{ ext{h}}$	$\mu^{ ext{h}}_b$	$\mu^{ ext{h}}_{c*}$	$\mu_a^{ m e}$	$\mu_b^{ m e}$	$\mu^{ ext{e}}_{c*}$
one-shot	1.20	2.73	0.24	0.67	0.31	0.21
SC	0.90	2.19	0.18	1.18	0.59	0.31
Exp.	0.79	1.34	0.31	0.58	0.63	0.39

Summary / Acknowledgments

- Efficient scheme for computing the electron-phonon self-energy
- Interpolation of the phonon coupling potential in real space
- Good agreement for the band gap and ZPR of Naphthalene
- Reasonable agreement for the electron and hole mobilities
- Important effect of lattice expansion on mobilities
- Self-consistent electron-phonon self-energy scheme
- On-the-mass-shell approximation better mimics self-consistency

Thank you for your attention!

