GW density matrix with ABINIT

Fabien Bruneval, ${ }^{1}$ Marc Torrent ${ }^{2}$
${ }^{1}$ Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay,
France
${ }^{2}$ CEA, DAM, DPTA, Bruyères-le-Châtel, France

What is GW?

Infinite summation of diagrams over one single class: the rings

GW

What is GW?

Outline

1) A finalized contribution to ABINIT:

Coulombic divergence integration in the exchange operator
2) A contribution to come:

Linearized GW density matrix for solids

Outline

1) A finalized contribution to ABINIT:

Coulombic divergence integration in the exchange operator
2) A contribution to come:

Linearized GW density matrix for solids

Reproducibility in $G_{0} W_{0}$

Cross validation among PW codes: ABINIT, BerkeleyGW, Yambo

Translation: Why do we still get different results with different codes?

Reproducibility in $G_{0} W_{0}$ Calculations for Solids

Tonatiuh Rangel, ${ }^{1,2, *}$ Mauro Del Ben, ${ }^{3}$ Daniele Varsano, ${ }^{4,5}$ Gabriel Antonius, ${ }^{2,6,7}$ Fabien Bruneval, ${ }^{8,1,6}$ Felipe H. da Jornada, ${ }^{2,6}$ Michiel J. van Setten, ${ }^{9,5,10}$ Okan K. Orhan, ${ }^{11}$ David
D. O'Regan, ${ }^{11}$ Andrew Canning, ${ }^{3}$ Andrea Ferretti, ${ }^{4,5}$ Andrea Marini, ${ }^{12,5}$ Gian-Marco
Rignanese, ${ }^{9,5}$ Jack Deslippe, ${ }^{13}$ Steven G. Louie, ${ }^{2,6}$ and Jeffrey B. Neaton ${ }^{1,2,14, ~} \dagger$
${ }^{1}$ Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 , United States
${ }^{2}$ Department of Physics, University of California at Berkeley, California 94720 , United States
${ }^{3}$ Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
${ }^{4}$ Centro S3, CNR-Istituto Nanoscienze, I-41125 Modena, Italy
${ }^{5}$ European Theoretical Spectroscopy Facility (ETSF)
${ }^{6}$ Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
${ }^{7}$ Département de Chimie, Biochimie et Physique, Institut de recherche sur l'hydrogène,
Université du Québec à Trois-Rivières, Qc, Canada
${ }^{8}$ DEN, Service de Recherches de Métallurgie Physique,
Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
${ }^{9}$ Institute of Condensed Matter and Nanoscience (IMCN),
Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
${ }^{10}$ IMEC, Kapeldreef 75, 3001 Leuven, Belgium
${ }^{11}$ School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
${ }^{12}$ Istituto di Struttura della Materia of the National Research Council,
Via Salaria Km 29.3, I-00016 Montelibretti, Italy
${ }^{13}$ NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720 , United States
${ }^{14}$ Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, United States
$A b$ initio many-body perturbation theory within the $G W$ approximation is a Green's function formalism widely used in the calculation of quasiparticle excitation energies of solids. In what has become an increasingly standard approach, Kohn-Sham eigenenergies, generated from a DFT calculation with a strategically-chosen exchange correlation functional "starting point", are used to construct G and W, and then perturbatively corrected by the resultant $G W$ self-energy. In practice, there are several ways to construct the $G W$ self-energy, and these can lead to variations in predicted quasiparticle energies. For example, for ZnO and TiO_{2}, reported $G W$ fundamental gaps can vary by more than 1 eV . In this work, we address the convergence and key approximations in contemporary $G_{0} W_{0}$ calculations, including frequency-integration schemes and the treatment of the Coulomb divergence in the exact-exchange term. We study several systems, and compare three different $G W$ codes: BerkeleyGW, Abinit and Yambo. We demonstrate, for the first time, that the same quasiparticle energies for systems in the condensed phase can be obtained with different codes, and we provide a comprehensive assessment of implementations of the $G W$ approximation.

Exchange operator converges slowly

Bulk silicon
 convergence wrt k-points

1. ABINIT: the worst of all codes
2. exchange operator: also present in hybrid functionals
F. Bruneval, GW density matrix

Exchange operator within PW

Coulomb interaction
Exact exchange in PW:
Density matrix

$$
\langle i \mathbf{k}| \Sigma_{x}|j \mathbf{k}\rangle=-\sum_{\mathbf{q}, \mathbf{G}} v(\mathbf{q}+\mathbf{G}) \sum_{v \in o c c .} M_{i v \mathbf{k}}(\mathbf{q}+\mathbf{G}) M_{j v \mathbf{k}}^{*}(\mathbf{q}+\mathbf{G})
$$

where the matrix elements are
$M_{i v \mathbf{k}}=\langle i \mathbf{k}| e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}|v \mathbf{k}-\mathbf{q}\rangle$
and the Coulomb interaction is

$$
v(\mathbf{q}+\mathbf{G})=\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^{2}}
$$

Exchange operator within PW

Coulomb interaction
Exact exchange in PW:
Density matrix

$$
\langle i \mathbf{k}| \Sigma_{x}|j \mathbf{k}\rangle=-\sum_{\mathbf{q}, \mathbf{G}} v(\mathbf{q}+\mathbf{G}) \sum_{v \in o c c .} M_{i v \mathbf{k}}(\mathbf{q}+\mathbf{G}) M_{j v \mathbf{k}}^{*}(\mathbf{q}+\mathbf{G})
$$

where the matrix elements are
$M_{i v \mathbf{k}}=\langle i \mathbf{k}| e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}|v \mathbf{k}-\mathbf{q}\rangle$
and the Coulomb interaction is

$$
v(\mathbf{q}+\mathbf{G})=\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^{2}}
$$

Behavior at $\mathbf{q}=\mathbf{G}=0$
$\longrightarrow \quad \delta_{i v}$

Integrable divergence in 3D
$\longrightarrow \propto \int_{0}^{q_{c}} d q 4 \pi q^{2} \frac{1}{q^{2}}$

Monte Carlo sampling of the miniBZ

Purpose: integrate the Coulomb interaction at $\mathbf{q}=0$
in the arbitrary shape volume of the $B Z$ around $\mathbf{q}=0, \Omega_{0}$

$$
\int_{\Omega_{0}} d \mathbf{q} v(\mathbf{q})=\frac{\Omega_{0}}{N_{\mathrm{MC}}} \sum_{\mathbf{q} \in \Omega_{0}} \frac{4 \pi}{q^{2}}
$$

Monte Carlo sampling of the miniBZ

Purpose: integrate the Coulomb interaction at $\mathbf{q}=0$ in the arbitrary shape volume of the $B Z$ around $\mathbf{q}=0, \Omega_{0}$

$$
\int_{\Omega_{0}} d \mathbf{q} v(\mathbf{q})=\frac{\Omega_{0}}{N_{\mathrm{MC}}} \sum_{\mathbf{q} \in \Omega_{0}} \frac{4 \pi}{q^{2}}
$$

Two parameters:
icutcoul 14, 15, 16
for short-, long-, any-range exchange
And $N_{\text {MC }}$ hard-coded to $2,500,000$

Outline

1) A finalized contribution to ABINIT:

Coulombic divergence integration in the exchange operator

2) A contribution to come:

Linearized GW density matrix for solids

Density matrix

Obtained from a Green's function or

$$
\gamma\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=-i G\left(\boldsymbol{r} t, \boldsymbol{r}^{\prime} t^{+}\right)
$$

from a mean-field approx.

$$
\mathcal{\gamma}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\sum_{i} f_{i} \varphi_{i}(\boldsymbol{r}) \varphi_{i}^{*}\left(\boldsymbol{r}^{\prime}\right)
$$

Electronic density

$$
\gamma(\boldsymbol{r}, \boldsymbol{r})=n(\boldsymbol{r})
$$

Kinetic energy

$$
\langle T\rangle=-\frac{1}{2} \int d \boldsymbol{r} \lim _{\boldsymbol{r}^{\prime} \rightarrow \boldsymbol{r}} \nabla_{\boldsymbol{r}^{\prime}}^{2} \mathcal{y}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)
$$

Hartree energy

$$
\left\langle E_{H}\right\rangle=\frac{1}{2} \int d \boldsymbol{r} d \boldsymbol{r}^{\prime} \gamma(\boldsymbol{r}, \boldsymbol{r}) \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \gamma\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}^{\prime}\right)
$$

Exchange energy

$$
\left\langle E_{x}\right\rangle=-\frac{1}{2} \int d \boldsymbol{r} d \boldsymbol{r}^{\prime} \gamma^{*}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \gamma\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)
$$

In summary: Everything but the electronic correlation energy

Linearized Dyson equation

Dyson equation

$$
\text { Equal time Green's function = density matrix } \quad \gamma\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=-i G\left(\boldsymbol{r} t, \boldsymbol{r}^{\prime} t^{+}\right)
$$

"Linearized" GW density matrix

"Linearized" GW density matrix

"Linearized" GW density matrix
or how to simulate self-consistent GW without doing it

Simple formula:
OCc-occ

$$
D_{i j}^{G W}=2 \delta_{i j}-2 \sum_{s a} \frac{w_{i a}^{s}}{\epsilon_{i}-\epsilon_{a}-\Omega_{s}} \frac{w_{j a}^{s}}{\epsilon_{j}-\epsilon_{a}-\Omega_{s}}
$$

virt-virt

$$
D_{a b}^{G W}=2 \sum_{s i} \frac{w_{i a}^{s}}{\epsilon_{i}-\epsilon_{a}-\Omega_{s}} \frac{w_{i b}^{s}}{\epsilon_{i}-\epsilon_{b}-\Omega_{s}}
$$

occ-virt

$$
\begin{aligned}
D_{i b}^{G W}= & -\frac{2}{\epsilon_{i}-\epsilon_{b}} \sum_{s j} \frac{w_{b j}^{s} w_{i j}^{s}}{\epsilon_{j}-\epsilon_{b}-\Omega_{s}} \\
& +\frac{2}{\epsilon_{i}-\epsilon_{b}} \sum_{s a} \frac{w_{i a}^{s} w_{b a}^{s}}{\epsilon_{i}-\epsilon_{a}-\Omega_{s}}
\end{aligned}
$$

Comparison to scGW dipoles

	LiH	HF	LiF	CO
sc $G W$ bond length [29]	1.579	0.919	1.586	1.118
$\mathrm{sc} G W[29]$	5.90	1.85	6.48	0.07
$D^{G W}$	5.91	1.84	6.42	0.10
$D^{\text {PT2 }}$	5.90	1.80	6.33	0.41
HF	5.96	1.93	6.52	-0.22
CCSD	5.92	1.85	6.37	0.10

[29] Caruso, Rinke, Ren, Rubio, Scheffler, Phys. Rev. B (2013)
Bruneval, Phys. Rev. B (2019)

34 molecules benchmark: ionization potential

$\theta=O$

Reference density matrix within CCSD

$$
D^{\mathrm{CCSD}}
$$

in a good basis set "cc-pVQZ"

[^0]F. Bruneval \& MAL Marques, JCTC (2013)

Density quality

CO

GW - CCSD

QSGW: $\quad \Sigma_{c p q \sigma}^{\text {QSGW }}=\frac{1}{4}\left[\Sigma_{c p q}^{\sigma}\left(\epsilon_{p \sigma}\right)+\Sigma_{c q p}^{\sigma}\left(\epsilon_{p \sigma}\right)+\Sigma_{c p q}^{\sigma}\left(\epsilon_{q \sigma}\right)+\Sigma_{c q p}^{\sigma}\left(\epsilon_{q \sigma}\right)\right]$

Density matrix quality

$$
\left\langle E_{\chi}\right\rangle=-\frac{1}{2} \int d \boldsymbol{r} d \boldsymbol{r}^{\prime} \gamma^{*}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \gamma\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)
$$

Density matrix in imaginary frequencies

$$
\begin{aligned}
& G=G_{0}+G_{0} \Sigma_{c} G_{0} \\
& D_{\boldsymbol{k} p q}=D_{\boldsymbol{k} p q}^{\mathrm{HF}}-\frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{\infty} d \omega \frac{1}{\mathrm{i} \omega-\epsilon_{\boldsymbol{k} p}}\langle p \boldsymbol{k}| \Sigma_{c}(\mathrm{i} \omega)|q \boldsymbol{k}\rangle \frac{1}{\mathrm{i} \omega-\epsilon_{\boldsymbol{k} q}} \\
& \mathcal{\text { Marc T. }} \\
& \mathcal{\gamma}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right), n(\boldsymbol{r}) \quad \text { Already in Abinit for } p=q
\end{aligned}
$$

Having improved densities in solids

Revisit the band offsets "à la Shaltaf-Rignanese-Pasquarello" PRL 2008

Supplemental information

GW / BSE work flow: the "one-shot" procedure

Also named $G_{0} W_{0}$
NotG \mathbb{W}

MOLGW: recycling old quant. chem. recipes

Ingredients:

- Real Gaussian basis functions:

$$
\phi_{\mu}(\boldsymbol{r})=Y_{l m}(\hat{\boldsymbol{r}}) r^{l} \sum_{i} c_{i} e^{-\alpha_{i} r^{2}}
$$

=> from Basis Set Exchange website

- Wavefunctions (LCAO):

$$
\varphi_{i}(\boldsymbol{r})=\sum_{\mu} C_{\mu i} \phi_{\mu}(\boldsymbol{r})
$$

Figure 3.3 Comparison of the quality of the least-squares fit of a $1 s$ Slater function $(\zeta=1.0)$ obtained at the STO-1G, STO-2G, and STO-3G levels.

- Coulomb integrals:

$$
\left(\mu v\left|\frac{1}{\boldsymbol{r}}\right| \kappa \lambda\right)=\int d \boldsymbol{r} d \boldsymbol{r}^{\prime} \phi_{\mu}(\boldsymbol{r}) \phi_{v}(\boldsymbol{r}) \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \phi_{\kappa}\left(\boldsymbol{r}^{\prime}\right) \phi_{\lambda}\left(\boldsymbol{r}^{\prime}\right)
$$

=> from LIBINT library

- XC functionals

$$
\epsilon_{x c}(\rho(\boldsymbol{r}), \nabla \rho(\boldsymbol{r}))
$$

$$
v_{x c}(\rho(\boldsymbol{r}), \nabla \rho(\boldsymbol{r}))
$$

=> from LIBXC library

Analytic expression for Σ

$$
\begin{gathered}
G_{0 p q}^{\sigma}=\sum_{i} \frac{\delta_{p q} \delta_{p i}}{\omega-\epsilon_{i \sigma}-\mathrm{i} \eta}+\sum_{a} \frac{\delta_{p q} \delta_{p a}}{\omega-\epsilon_{a \sigma}+\mathrm{i} \eta} \\
* \\
\left(v \chi^{\mathrm{RPA}} v\right)_{p q}^{r t}(\omega)=\sum_{s} w_{p q}^{s} w_{r t}^{s}\left[\frac{1}{\omega-\Omega_{s}+i \eta}-\frac{1}{\omega+\Omega_{s}-i \eta}\right] \\
= \\
\Sigma_{c p q}^{\sigma}(\omega)=\sum_{i s} \frac{w_{p i \sigma}^{s} w_{q i \sigma}^{s}}{\omega-\epsilon_{i \sigma}+\Omega_{s}-\mathrm{i} \eta}+\sum_{a s} \frac{w_{p a \sigma}^{s} w_{q a \sigma}^{s}}{\omega-\epsilon_{a \sigma}-\Omega_{s}+\mathrm{i} \eta}
\end{gathered}
$$

34 molecules benchmark: ionization potential

$\theta=O$

Reference IP's obtained within $\operatorname{CCSD}(\mathrm{T})$
$\mathrm{IP}=-\epsilon_{\mathrm{HOMO}}^{\mathrm{QP}}=E_{\text {cation }}^{\mathrm{CCSD}(\mathrm{T})}-E_{\text {molecule }}^{\mathrm{CCSD}(\mathrm{T})}$
in a good basis set "cc-pVQZ"

F. Bruneval \& MAL Marques, JCTC (2013)
F. Bruneval, GW density matrix

Chemistry vs Physics: as of today

Today's best practices:

GW most noticeable failures

σ_{p} orbitals

Error: $\quad-0.33 \mathrm{eV}$
$-0.38 \mathrm{eV}$
$-0.42 \mathrm{eV}$
F. Bruneval, GW density matrix

Natural occupation numbers

Eigenvalues of the density matrix

scGW: Hellgren, Caruso, Rinke, Rohr, Ren, Rubio, Scheffler, Phys. Rev. B (2015)

Total energies without self-consistency

GW correlation

$$
E_{c}^{G W}[G]=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{d \nu}{2 \pi} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}\left[\chi^{1}\left(\mathbf{r}_{2}, \mathbf{r}_{1}, \mathrm{i} \nu\right)-\chi^{0}\left(\mathbf{r}_{2}, \mathbf{r}_{1}, \mathrm{i} \nu\right)\right]
$$

RPA correlation

$$
E_{c}^{\mathrm{RPA}}[G]=\frac{1}{2} \int_{0}^{1} d \lambda \int_{-\infty}^{+\infty} \frac{d \nu}{2 \pi} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}\left[\chi^{\lambda}\left(\mathbf{r}_{2}, \mathbf{r}_{1}, \mathrm{i} \nu\right)-\chi^{0}\left(\mathbf{r}_{2}, \mathbf{r}_{1}, \mathrm{i} \nu\right)\right]
$$

Adiabatic connection captures the correlation part of the kinetic energy

	$F\left[y^{\mathrm{gKS}}\right]$	$F\left[y^{G W}\right]$	$E_{c}^{G W}$	E_{c}^{RPA}
Galitskii- Migdal				
RPA				
New proposal				

Stability of the energy functionals

Total energy evaluation starting from G^{gKS}

Only one evaluation of the screened Coulomb interaction W!

Entire Fock operator quality

$\langle\mathrm{HOMO}| F[\gamma]|\mathrm{HOMO}\rangle$

Density matrix effect on Fock operator

IP from improved matrix density

- $D^{G W}$ has a similar effect as $D^{C C S D}(+0.2 \mathrm{eV})$
- Best mean-field starting point corresponds to the best $G W+F\left[D^{G W}\right]$

[^0]: F. Bruneval, GW density matrix

