New implementation of Chebyshev filtering inside ABINIT

B.Sataric ${ }^{1}$, J.Bieder ${ }^{\mathbf{2}}$, M. Torrent ${ }^{\mathbf{3}}$ and W.Jalby ${ }^{\mathbf{1}}$

1 University of Versailles UVSQ, France
2 University of Liege, Belgium
3 CEA, DAM, DIF, Arpajon, France

Chebyshev filtering algorithm

- Eigenvalues of Eigenproblem $H \psi=\lambda S \psi$ can be represented by Λ, and eigenvectors can be represented by P
- In that case eigenproblem notation becomes $H P=S P \wedge$ or $S^{-1} H$ $=P \wedge P^{-1}$
- Spectral filter T_{n} can be used to filter eigencomponents as given in formula: $T_{n}\left(S^{-1} H\right) \psi=P T_{n}(\Lambda) P^{-1} \psi$
- Rayleigh-Ritz procedure is used to separate the individual eigenvectors and eigenvalues, and iterate until convergence

Chebyshev filtering algorithm

- Input: a set of $N_{p w} \times N$ bands wavefunctions Ψ
- Output: the updated wave-functions Ψ
- Locate eigenvalue spectrum
- Compute Rayleigh quotients for every band, and set λ_{-}equal to the largest one
- Set λ_{+}to be an upper bound of the spectrum
- Compute the filter center and radius $c=\left(\lambda_{+}+\lambda_{-}\right) / 2, r=\left(\lambda_{+}-\lambda_{-}\right) / 2$
- Compute Chebyshev polynomial for each eigenvector
- for each band ψ do
- Set $\psi^{0}=\psi$, and $\psi^{1}=1 / r^{*}\left(S^{-1} H \psi^{0}-c \psi^{0}\right)$
- for $i=2, \ldots, n_{\text {inner }}$ do

$$
\psi^{i}=2 / \Gamma *\left(S^{-1} H \psi^{i-1}-c \psi^{i-1}\right)-\psi^{i-2}
$$

- end for
- end for
- Apply Rayleigh-Ritz procedure
- Compute the subspace matrices $H_{\psi}=\Psi^{\top} H \Psi$, and $S_{\psi}=\Psi^{\top} S \psi$
- Solve the dense generalized eigenproblem $H_{\Psi} X=S_{\Psi} X \wedge$, where Λ is a diagonal matrix of eigenvalues, and X is the S_{ψ} - orthonormal set of eigenvectors
- Do the subspace rotation $\Psi \leftarrow \Psi X$

Abinit abstract layer (xg datatypes developed by Jordan Bieder²)

- Highly efficient multi-threaded wrapper module for BLAS/LAPACK (level-1 and level 2) routine calls
- Module is used to help developer use 2D arrays and their subblocks with ease (by xgBlock pointer objects)
- It contains sub-module used for MPI matrix transpositions (all-to-all and all-gether)
- New functions added during Chebfi2 development:
xgBlock_colwiseDivision
xgBlock_saxpy
- XG provided smooth translation of CB1 code into CB2 without worrying about particular details of BLAS or LAPACK function parameters, Fortran pointers or OpenMP pragmas and variables

Xg usage example (Chebfi 2 nextOrderPolynom)

```
if (chebfi%paw) then
    !apply matrix inverse function
    call getBm1X(chebfi%xAXColsRows, chebfi%X_next)
else
    !copy xAXColsRows into X_next array
    call xgBlock_copy(chebfi%xAXColsRows,chebfi%X_next, 1, 1)
end if
!scale xXColsRows by center
call xgBlock_scale(chebfi%xXColsRows, center, 1)
!X_next = X_next - xXColsRows
call xgBlock_saxpy(chebfi%X_next, dble(-1.0), chebfi%xXColsRows)
!scale xXColsRows by 1/center
call xgBlock_scale(chebfi%xXColsRows, 1/center, 1)
if (iline == 0) then
    !scale X_next by 1/radius
    call xgBlock_scale(chebfi%X_next, one_over_r, 1)
else
    !scale X_next by 2/radius
    call xgBlock_scale(chebfi%X_next, two_over_r, 1)
    !X_next = X_next - X_prev
    call xgBlock_saxpy(chebfi%X_next, dble(-1.0), chebfi%X_prev)
```

end if

Different solver scaling on Intel Xeon Cascadelake

TODO list and expectations

- TODO:
- Finalization of MPI transposition
- Optimization of coding (Hamiltonian application and inverse matrix calculation)
- Addition of nspinors=2 capability
- Automation of task distribution
- Expectations:
- Better MPI scaling of Chebfi2 than LOBPCG2 because Rayleigh-Ritz procedure is done only once (instead of once per iteration) - thus reducing communication
- Chebfi2 will be available for use as a standalone library

