

PREDICTION AND DISCOVERY OF TOPOLOGICAL MATERIALS: WANNIER CHARGE CENTERS AND Z2PACK PACKAGE

Alexey A. Soluyanov University of Zurich

ABIDEV2019 Workshop, 22/05/19

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Introduction to Topological Materials

-0.2 0 0.2 nds t 20 Dirac Fermions callo set freely from one band to Momentum (1/Å) d from the rest. of energy is enough to drive the system away from its group

two t

ustra

atek

<u>ure</u>

e ban

(a)

two electrons can 200 free

Fe Enstra

vo be

ш 0.4-

0.8

ere

Method: hybrid Wannier functions

Hybrid Wannier function: $|(R_x, k_y, k_z), n\rangle = \frac{1}{2\pi} \int e^{ik_x R_x} |\Psi_{n, \mathbf{k}}\rangle dk_x$ Localized in *x*, delocalized in *y* and *z*

Hybrid Wannier centers: $\bar{x}_n(k_v, k_z) = \langle (R_x, k_v, k_z), n | \hat{X} | (R_x, k_v, k_z), n \rangle$

Sgiarovello, Peressi, Resta, PRB'03 Soluyanov, Vanderbilt PRB'11 Yu, Qi, Bernevig, Fang, Dai PRB'11

Track the centers as a function of *k* to understand the charge motion!

Physics with Hybrid Wannier Functions: Electronic Polarization and Chern Numbers

Electronic polarization of a 1D insulator:

Individual Chern Numbers

Not isolated bands or degeneracies are present in the spectrum

$$\mathcal{H} = \bigoplus_i \mathcal{H}_i$$

Split the Hilbert space into subspaces related by symmetry

$$P_{\mathbf{k}} = \sum_{i} P_{\mathbf{k}}^{(i)}; \qquad \qquad UP_{\mathbf{k}}^{(i)}U^{-1} = P_{U^{-1}\mathbf{k}}$$

Obtain the individual Chern numbers

$$c_{i} = \frac{i}{2\pi} \int_{M} \operatorname{Tr} \left\{ P_{\mathbf{k}}^{(i)} \left[\partial_{k_{1}} P_{\mathbf{k}}^{(i)}, \partial_{k_{2}} P_{\mathbf{k}}^{(i)} \right] \right\} \mathrm{d}k_{1} \wedge \mathrm{d}k_{2}$$

Relation to the total Chern number

$$C = \sum_{i} c_i$$

Vanishing *total* Chern number does not exclude a topological phase!

Time-Reversal Symmetric Z₂ Insulators

Anti-unitary time-reversal operator for spinful fermions:

 $\theta^2 = -1$

Kramers pairs of occupied bands:

 $\theta |u_I(\mathbf{k})\rangle = |u_{II}(-\mathbf{k})\rangle$

$$\theta |u_{II}(\mathbf{k})\rangle = -|u_I(-\mathbf{k})\rangle$$

Individual Chern numbers:

$$\begin{array}{c} c_I = +1 \\ c_{II} = -1 \end{array} \qquad C = c_I + c_{II} = 0 \quad \textcircled{\text{TRS}} \quad \sigma_{xy} = 0 \end{array}$$

Meaning of Z_2 : If c_i is odd, the phase is topological

Soluvanov, Vanderbilt PRB'11 Yu, Qi, Bernevig, Fang, Dai PRB'11

Crystalline Topological Insulators: Mirror

PHYSICAL REVIEW MATERIALS 2, 103805 (2018)

Automated construction of symmetrized Wannier-like tight-binding models from *ab initio* calculations

Dominik Gresch,¹ QuanSheng Wu,^{2,*} Georg W. Winkler,^{3,*} Rico Häuselmann,⁴ Matthias Troyer,^{1,5} and Alexey A. Soluyanov^{1,6,7}

Crystalline Topological Insulators: C₄

Not yet found C4-topological insulators

Topological (Semi-) Metals

How to define topology and Chern numbers in metals?

Brief overview via the analogy to Chern and Z_2 insulators

$$C = \frac{1}{2\pi} \int_{BZ} dk_x dk_y \left[\partial_{k_x} \langle u_{n\mathbf{k}} | \partial_{k_y} | u_{n\mathbf{k}} \rangle - \partial_{k_y} \langle u_{n\mathbf{k}} | \partial_{k_x} | u_{n\mathbf{k}} \rangle \right]$$

Berry curvature flux through a BZ torus: C counts the number of monopoles inside the torus

Weyl Semimetals

A linear crossing of two bands:

$$H = (\boldsymbol{v} \cdot \boldsymbol{k})I + \boldsymbol{k} \cdot \boldsymbol{\sigma}$$

$$v = 0$$

Weyl fermion-point

Insulator on a sphere in *k*-space

Non-relativistic Weyl fermion-point

Weyl fermion chirality= Chern number on a sphere

Dirac Semimetals

Z2Pack Software

PHYSICAL REVIEW B 95, 075146 (2017)

Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials

Dominik Gresch,¹ Gabriel Autès,^{2,3} Oleg V. Yazyev,^{2,3} Matthias Troyer,¹ David Vanderbilt,⁴ B. Andrei Bernevig,⁵ and Alexey A. Soluyanov^{1,6}

A framework to identify topological phases in materials allows one to

> Automatically identify material candidates for topological insulator/semimetal phases
> Do a high-throughout search and classification

> 2. Do a high-throughput search and classification of topologies in existing materials
> 3. Identify novel topological phases in weakly correlated materials

Z2Pack works with first-principles, tight-binding and k.p models

