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Figure 1.1: Possible band structures for a 1D system with two electrons per cell
(lattice constant is taken to be a unit of length). Five lowest energy bands are
plotted. (a) Metallic system. No energy gap. (b) Insulating system. The energy
gap separates two occupied bands.

A huge amount of information about the system in question can be obtained

from the band structure alone. For example, consider a 1D periodic system with

two electrons per unit cell. Neglecting spin, one needs two bands to accommodate

two spinless electrons. Possible band structures are illustrated in Fig. 1.1. In the

band structure shown in panel (a) there are no two bands that can be completely

separated from the rest. The two electrons can move freely from one band to

another. Hence, we conclude that this system is metallic – an infinitesimal amount

of energy is enough to drive the system away from its ground state. Quite the

contrary, in the band structure of panel (b) the two lower bands (valence bands)

are clearly separated from the the rest (conduction bands) by the forbidden energy

region – an energy gap between the bottom of the conduction band and the top

of the valence band. In the ground state the two lowest bands are occupied and

the system is insulating, meaning that a finite amount (Eg) of energy is needed to

excite an electron. Thus, we see that a mere glimpse at the band structure allows

one to make predictions about the conducting properties of a given material and

its possible response to external perturbations.

However, energy bands are not the only useful output of band theory. The

geometric phases of the single-particle wavefunctions also turned out to be a very
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Topological invariants  
provide richer classification 

2D Dirac Fermions

VIEWPOINT

Type-II Dirac Fermions Spotted
Three separate groups report experimental evidence of novel type-II Dirac quasiparticles,
suggesting possible applications in future quantum technology.

by Alexey A. Soluyanov⇤,†

The standard model of particle physics describes
all the known elementary particles, like electrons
and quarks. Many of these particles have analogs
in condensed matter, where they arise as collec-

tive states, or quasiparticles. One example is an elec-
tronic state in graphene that behaves like a massless Dirac
fermion—a spin-1/2 particle that is not its own antipar-
ticle. But condensed-matter physics may offer a longer
list of “elementary particles” than found in the standard
model. This is due to the fact that—unlike fundamental
particles—quasiparticles in solids are not constrained by so-
called Lorentz invariance. A Lorentz-violating quasiparticle
is one whose momentum-energy relation depends on the di-
rection it travels. Three separate teams [1–3] have collected
the first experimental evidence of quasiparticles called type-
II Dirac fermions, which break Lorentz invariance. These
electronic states, which have no counterpart in the standard
model, could be associated with a new type of supercon-
ductivity, which has potential applications in thermoelectric
devices and quantum computing.

Relativistic quantum field theories provide the frame-
work for our understanding of elementary particles. For
many years now, physicists have turned to low-energy
condensed-matter systems as a way to investigate quantum
field theories without paying the steep price of a high-energy
particle collider [4]. These studies have revealed a num-
ber of elementary excitations that—like the type-II Dirac
fermions—appear in materials but are not present in the
standard model. Recent examples include several topolog-
ical phases [5–9], one of which is the so-called type-II Weyl
fermion [9]. A Weyl fermion is a massless spin-1/2 particle
whose antiparticle has the opposite chirality, or “handed-
ness.” Weyl fermions have a close relationship to Dirac
fermions: a Dirac fermion can be viewed as two superim-
posed Weyl fermions of opposite chirality that do not mix,
because there are crystalline symmetry constraints. Weyl
fermions have not been seen in particle physics, but in con-
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Figure 1: The cone-shaped band structure near a Dirac point is
shown here for a type-I material (left) and a type-II material (right).
In the type-I case, the electron and hole pockets are point-like
regions near the tips of the cones. By contrast, the type-II cones
are tilted, creating open pockets that touch at the Dirac point. In
this graphic, the hole pocket is the purple-shaded triangular region,
while the electron pocket is the pink-shaded triangular region.
(Dominik Gresch)

densed matter, two different Weyl-like quasiparticles have
been observed in the last couple of years. The first quasipar-
ticle is an analog to the typical, or “type-I,” Weyl fermion of
quantum field theory [9]. The other quasiparticle, called a
type-II Weyl fermion [10], breaks Lorentz invariance in the
same way as the type-II Dirac fermion.

To understand type-II Dirac and Weyl fermions, one can
first consider a type-I material, like graphene. The elec-
tronic structure of graphene has regions where the valence
and conduction bands have cone shapes that meet at a sin-
gle point, called a Dirac or Weyl point (see Fig. 1). This cone
means that the “pocket” for conduction electrons is a small
closed region in the energy-momentum diagram just above
the crossing point. Similarly, the hole pocket in the valence
band is a compact region below the point.

For a type-II material, the energy equation (or Hamil-
tonian) consists of the type-I linear Hamiltonian and an
additional constant (but momentum dependent) term that
breaks Lorentz invariance. The Lorentz violation, for both
Weyl and Dirac cases, can be represented by a tilted cone in
energy-momentum space. As a result of this tilting, the cor-
responding Dirac points occur at the touching point of the
electron and hole pockets. In linear approximation, these

physics.aps.org c� 2017 American Physical Society 05 July 2017 Physics 10, 74

FIG. 1: Coulomb-biased topological surface states: a, The (blue) bulk and (green) surface

band structure of Bi2Se3 is traced above ARPES measurements of band structure at n-type and

p-type bulk compositions. b, A numerical simulation of copper-interfaced Bi2Se3 shows the partial

density of low energy surface states at depths of 0-0.5nm and 2-3nm inside the crystal. (white

dashed lines) Electrons from the upper Dirac cone of Bi2Se3 remain in the outermost 0.5nm, and

electrons in the lower Dirac cone are located 1-2nm deeper in the crystal. c, The surface states

of Cu-deposited Bi2Se3 resonate at different photon energies, demonstrating that they occupy a

quantum well-like environment. Measurements have a <
∼1nm penetration depth into the crystal

[25]. An integrated comparison reveals the band structure traced at right, with new Dirac points

labeled D1 and D2 and the Fermi surface shown as an inset. States that evolve adiabatically from

the original upper Dirac cone (“D0”) are drawn in a darker hue.
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capability to prepare high-quality and high-mobility samples has
enabled the experimental observations of many interesting
phenomena that arises from its 2D Dirac fermions. The large
Fermi velocity and high mobility in Cd3As2 are among the
important experimental criteria to explore the 3D relativistic
physics in various Hall phenomena in tailored Cd3As2.

We compare ARPES observations with our theoretical calcula-
tions, which is qualitatively consistent with previous calculations14.
The reason for the use of our calculations is twofold: first, our
calculations are fine tuned based on the characterization of samples
used in the present ARPES study; second, sufficiently detailed cuts
are not readily available from ref. 14, which is necessary for a
detailed comparison of ARPES data with theory. In theory, there
are two 3D Dirac nodes that are expected at two special k points
along the G!Z momentum space cut-direction, as shown by the
red crossings in Fig. 1d. At the (001) surface, these two k points
along the G!Z axis project on to the !G point of the (001) surface
BZ (Fig. 1d). Therefore, at the (001) surface, theory predicts one
3D Dirac cone at the BZ centre !G point, as shown in Fig. 2a. These
results are in qualitative agreement with our data, which supports
our experimental observation of the 3D BDS phase in Cd3As2. We
also study the ARPES measured constant energy contour maps
(Fig. 2c and d). At the Fermi level, the constant energy contour
consists of a single pocket centred at the !G point. With increasing
binding energy, the size of the pocket decreases and eventually
shrinks to a point (the 3D Dirac point) near EB ’ 0:2 eV. The
observed anisotropies in the iso-energetic contours are likely due to

matrix element effects associated with the standard p-polarization
geometry used in our measurements.

3D dispersive nature. A 3D Dirac semimetal is expected to
feature nearly linear dispersion along all three momentum space
directions close to the crossing point, even though the Fermi/
Dirac velocity can vary significantly along different directions.
It is well known that in real materials, such as pure Bi, graphene
or TIs, the Dirac cones are never perfectly linear over a large
energy window yet they can be approximated to be so within a
narrow energy window and in comparison to the large effective
mass of conventional band electrons in many other materials.
In order to probe the 3D nature of the observed low-energy
Dirac-like bands in Cd3As2, we performed ARPES measurements
as a function of incident photon energy to study the out-of-plane
dispersion perpendicular to the (001) surface. Upon varying the
photon energy, one can effectively probe the electronic structure
at different out-of-plane momentum kz values in a 3D BZ and
compare with band calculations. In Cd3As2, the electronic
structure or band dispersions in the vicinity of its 3D Dirac-like
node can be approximated as: v2

kðk2
x þ k2

yÞ þ v2
?ðkz ! k0Þ2 ¼ E2,

where k0 is the out-of-plane momentum value of the 3D Dirac
point. Thus, at a fixed kz value (which is determined by the
incident photon energy value), the in-plane electronic dispersion
takes the form: v2

kðk
2
x þ k2

yÞ ¼ E2! v2
?ðkz ! k0Þ2. It can be seen

that only at kz ¼ k0 the in-plane dispersion is a gapless Dirac cone,
whereas in the case for kzak0 the nonzero kz! k0 term acts as an
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Figure 1 | Brillouin zone symmetry and 3D Dirac cone. (a) Cd3As2 crystalizes in a tetragonal body centre structure with space group of I41cd, which has
32 number of formula units in the unit cell. The tetragonal structure has lattice constant of a ¼ 12.670 Å, b ¼ 12.670 Å and c ¼ 25.480 Å. (b) The basic
structure unit is a four corner-sharing CdAs3-trigonal pyramid. (c) Core-level spectroscopic measurement where Cd 4d and As 3d peaks are clearly
observed. Inset shows a picture of the Cd3As2 samples used for angle-resolved photoemission spectroscopy (ARPES) measurements. The flat and mirror-
like surface indicate the high quality of our samples. (d) The bulk BZ and the projected surface BZ along the (001) direction. The red crossings locate at
(kx, ky, kz) ¼ (0, 0, 0.15(2p)/(c*)) (c* ¼ c/a). They denote the two special k points along the G! Z momentum space cut-direction, where 3D Dirac band-
touchings are protected by the crystalline C4 symmetry along the kz axis. (e) Second derivative image of ARPES dispersion map of Cd3As2 over the wider
binding energy range. Various bands are well-resolved up to 3 eV binding energy range. (f) ARPES EB! kx cut of Cd3As2 near the Fermi level at around

surface BZ centre !G point.
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Hybrid Wannier function:

Localized in x, delocalized in y and z

Hybrid Wannier centers:

Track the centers as a function of k 
to understand the charge motion!

|(Rx, ky, kz), ni =
1

2⇡

Z
eikxRx | n,kidkx
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x̄n(ky, kz) = h(Rx, ky, kz), n|X̂|(Rx, ky, kz), ni
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Physics with Hybrid Wannier Functions: 
Electronic Polarization and Chern Numbers 
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Electronic polarization of a 1D insulator:

Px =
NoccX

n

x̄n mod 1
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in 1D Wannier functions are  
always exponentially localized

BZ
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A. Individual Chern numbers

The notion of individual Chern numbers [81] is based
on the idea of splitting the Hilbert space spanned by
an isolated set of bands Hset into a collection of Hilbert
spaces

Hset =
NM

i=1

Hi (23)

in such a way that the Chern number associated with
each of these Hilbert spaces is an integer. This means
that the projector P set

k onto Hset is decomposed into pro-
jectors on the individual Hilbert spaces

P
set
k =

NX

i=1

P
(i)
k , (24)

for any k on the 2D smooth and closed manifold M , on
which the bands are defined. The necessary condition for
the individual Chern numbers to be integral is that each

projector P (i)
k is smooth on M [86].

The total Chern number of the set of bands [86]

Cset =
i

2⇡

Z

M

Tr
�
P

set
k

⇥
@k1P

set
k , @k2P

set
k

⇤ 
dk1^dk2 (25)

is then equal to the sum of individual Chern numbers
(see Appendix D)

Cset =
NX

i=1

ci, (26)

where

ci =
i

2⇡

Z

M

Tr
n
P

(i)
k

h
@k1P

(i)
k , @k2P

(i)
k

io
dk1 ^ dk2. (27)

An important example of such splittings of the Hilbert
space is the one with each Hi containing only a single
band |uk,ii. If the projectors |uk,iihuk,i| are chosen to
be smooth on the manifold M , each band is assigned an
integer individual Chern number. However, an actual
construction of a gauge (projector choice) that results
in integer individual Chern numbers is a complicated
task [87], since the gauge (and hence projectors) obtained
from diagonalization of the Hamiltonian numerically on
the mesh of k-points can have discontinuities around de-
generacy points in the energy spectrum. Moreover, in
accord with the above discussions of WCCs and Wilson
loops, one can manipulate the gauge choice to produce
a di↵erent decomposition of Hset with di↵erent values of
ci’s, as illustrated in Fig. 3.

Since the individual Chern numbers depend on a par-
ticular splitting of the Hilbert space, they lack physical
meaning, unless some physical constraints on the sub-
spaces Hi fix their values. These constraints are pro-
vided by the symmetries of the underlying Hamiltonian.

FIG. 3. Illustration of di↵erent gauge choices for a system
with N = 3 bands and Cset = 1. Left panel: Bands No. 1
and 2 have individual Chern numbers c1 = 2 and c2 = �1.
Right panel: Bands No. 2 and 3 have zero Chern number,
and thus c1 = Cset = 1

If the gauge used to split the Hilbert space into individual
Bloch states respects the symmetry (meaning that the
projectors resulting from the splitting respect the sym-
metry), a symmetry-protected topological phase is bound
to have at least some non-zero individual Chern num-
bers. Thus, choosing the subspaces according to their
symmetry behaviour allows for a unique classification of
symmetry-protected topological states.
An illustrative example here is provided by time-

reversal (TR) invariant systems [7, 8], where Bloch bands
come in Kramers pairs. Consider the case of a single
such pair. An individual Chern number can be associ-
ated with each of the two bands in the Kramers pair.
This is equivalent to splitting the Hilbert space spanned
by the Kramers pair into two subspaces

Pk = P
(1)
k + P

(2)
k . (28)

corresponding to projectors P (i)
k that are smooth on M .

In the gauge that respects TR symmetry, the two pro-
jectors are related by

P
(1)
k = ✓P

(2)
�k✓

�1
, (29)

for all k in M , where ✓ is the TR operator. Under this
constraint, the HWCCs need to come in pairs of TR-
symmetric momenta [62, 88], and the individual Chern
numbers of the two bands must be opposite (c2 = �c1).
In the quantum spin Hall phase, they are constrained to
be odd, while they are bound to be even in the Z2-even
phase [88], as illustrated in Fig. 5. It is TR-symmetry
that enforces the distinction between the two phases, and
no splitting of the Kramers pair in the Z2-odd phase sub-
ject to the TR constraint of Eq. 29, can produce vanishing

Relation to the total Chern number 

C =
X

i

ci
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Vanishing total Chern number does not exclude a topological phase!
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Anti-unitary time-reversal operator for spinful fermions:

Kramers pairs of occupied bands: ✓|uI(k)i = |uII(�k)i
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Individual Chern numbers:
cI = +1
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Figure 3.2: Schematic edge spectrum of the semi-infinite Chern insulator: (a) C =
1, (b) C = −1, (c) C = 0, (d) C = 1. The continuum of bulk bands is shaded.

Figure 3.3: Edge of a semi-infinite sample. Arrows indicate continuation to infin-
ity.
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Figure 3.4: Band structure for a hypothetical semi-infinite sample of the quantum
spin Hall insulator. Shadowed regions correspond to the continuum of bulk states.

Haldane model.

Note that in principle, it does not make sense to talk about Chern numbers

of separate bands in the presence of degeneracy. However, in this case the spin

quantum number allows us to distinguish two bands, and define a Chern number

for each of them, using the formula (3.18) with F computed separately for spin

up and spin down states. The Hall conductivity is odd under T , so that the

total Chern number of all the occupied bands in a T -symmetric insulator has to

be zero. Therefore, the Chern number of the spin-up state is minus that of the

spin-down state

C↑ = −C↓. (3.30)

It is interesting to look at what happens at the edge of such a system. In the

Sec. 3.3 it was argued that a semi-infinite sample of a Chern insulator is character-

ized by the presence of current-carrying edge states. For the T -symmetric sinfull

case, the typical spectrum of the semi-infinite model is shown in Fig. 3.4. There

are two edge states that have opposite spins and propagate in different directions,

as a consequence of Eq. (3.30). This means that there is no charge transport along

ALEXEY A. SOLUYANOV AND DAVID VANDERBILT PHYSICAL REVIEW B 83, 235401 (2011)

FIG. 1. (Color online) Sketch of evolution of Wannier charge
centers (WCCs) x̄ vs time t during an adiabatic pumping process.
Regarding x̄ ∈ [0,1 as a unit circle and t ∈ [0,T /2] as a line segment,
the cylindrical (x̄,t) manifold is represented via a sequence of circular
cross sections at left, or as an unwrapped cylinder at right. Each red
rhombus marks the middle of the largest gap between WCCs at given
t . (a) Z2 insulator; WCCs wind around the cylinder. (b) Normal
insulator; WCCs reconnect without wrapping the cylinder.

the bottom panel, by contrast, the unit circle is wrapped zero
times, and no such exchange of partners occurs.

If one has access to the continuous evolution of the WCCs
vs t , as shown by the solid blue and green curves in Fig. 1, this
method works in principle for an arbitrary number of occupied
bands (i.e., WFs per unit cell). An illustrative example with
many bands appears in Fig. 1 of Ref. 33. Either the “bands”
x̄n exchange partners in going from t = 0 to t = T/2 (φ = 0
to φ = π in their notation), or they do not, implying Z2 odd
or even, respectively. Equivalently, one can draw an arbitrary
continuous curve starting within a gap at t = 0 and ending
within a gap at t = T/2; the system is Z2 odd if this curve
crosses the WCC bands an odd number of times, or Z2 even
otherwise.

In practice, however, one will typically have the WCC
values only on a discrete mesh of t points, in which case
the connectivity can be far from obvious. Certainly one cannot
simply make the arbitrary branch cut choice x̄n ∈ [0,1], sort
the x̄n in increasing order, and use the resulting indices to
define the paths of the WCCs. This would, for example, give
an incorrect evolution from t1 to t2 in Fig. 1(b), since one
WCC passes through the branch cut in this interval, apparently
jumping discontinuously from the “top” to the “bottom” of the
unwrapped cylinder at right. (A similar jump happens again
near t3.)

One possible approach is that of Ref. 33 mentioned above,
that is, to increase the t mesh density until, by visual inspection,
the connectivity becomes obvious. However, this becomes
prohibitively expensive in the first-principles context, since
a calculation of many (typically 10–30) bands would have to
be done on an extremely fine mesh of t points. It is typical
for some of the WCCs to cluster rather closely together during
part of the evolution in t ; if this clustering happens near the
artificial branch cut, it can become very difficult to determine

the connectivity from one t to the next, even if a rather dense
mesh of t values is used. Moreover, an algorithm of this kind is
difficult to automate. For these reasons, we find that the direct
approach of plotting the evolution of the WCCs is not a very
satisfactory algorithm for obtaining the topological indices, at
least in the case of a large number of occupied bands.

B. Tracking gaps in the WCC spectrum

Here we propose a simple procedure that overcomes the
above obstacles, allowing the Z2 invariant to be computed in
a straightforward fashion. The main idea is to concentrate on
the largest gap between WCCs, instead of on the individual
WCCs themselves. As explained above and illustrated by the
red dashed curve in Fig. 1, the path following the largest gap
in x̄n values (with vertical excursions at critical values of t)
crosses the x̄n bands a number of times that is equal, mod 2, to
theZ2 invariant. Our approach, in which we choose this path as
an especially suitable one for discretizing, can be implemented
without reference to any branch cut in the determination of the
x̄n, allowing the Z2 invariant to be determined from the flow
of WCCs on the cylindrical (x̄,t) manifold directly.

As in Fig. 1, we again consider a set of M circular sections
of the cylinder that correspond to the pumping parameter
values t (m) = T (m − 1)/2M , where m ∈ [0,M]. At each tm
we define z(m) to be the center of the largest gap between
two adjacent WCCs on the circle. (If two gaps are of equal
size, either can be chosen arbitrarily.) For definiteness we
choose z(m) ∈ [0,1), but as we shall see shortly, the branch
choice is immaterial. In the continuous limit M → ∞, z(t)
takes the form of a series of path segments on the surface
of the cylinder, with discontinuous jumps in the x̄ direction
at certain critical parameter values tj . Our algorithm consists
in counting the number of WCCs jumped over at each tj , and
summing them all mod 2. As becomes clear from an inspection
of Fig. 1 and similar examples of increasing complexity, the
WCCs exchange partners during the evolution from t = 0 to
T/2 only if this sum is odd, so that this sum determines the Z2
invariant of the system.

The approach generalizes easily to the case of discrete z(m).
Let #m be the number of WCCs x̄(m+1)

n that appear between
gap centers z(m) and z(m+1), mod 2. As we shall see below, this
can be computed in a manner that is independent of the branch
cut choices used to determine the x̄m

n and z(m). Then the overall
Z2 invariant is just

# =
M∑

m=0

#m mod 2. (16)

This argument is illustrated in the right-hand panels of
Fig. 1 for the two band case and M = 4. The rectangles
represent the surface of the cylinder in the parameter space, and
should be regarded as glued along the longer sides. The circles
correspond to x̄(m)

n values, while each red rhombus represents
the center z(m) of the largest gap between x̄(m)

n values. In
Fig. 1(a) there is one jump that occurs between m = 2 and
m = 3, in which one WCC is jumped over; thus #m = 0
except for #2 = 1, giving # = 1. In Fig. 1(b), on the other
hand, there are two jumps, once between m = 1 and m = 2
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induce a topological classification, however, to date only few
such classifications are known [15– 19]. We expect Z2Pack to
be most useful for identification of materials with yet unknown
topologies, which, in turn, would accelerate the progress
towards full classification of possible crystalline topological
phases and the corresponding low-energy excitations. The two
examples of crystalline topological phases we consider below
are those of the mirror-symmetric and fourfold rotational (C4)
topological insulators.

1. Mirror-symmetric topological phases

The presence of mirror symmetry in the crystal structure of
a material results in the presence of planes in the BZ that are
mirror symmetric. This means that the Bloch states on these
planes are eigenstates of a unitary matrix M that describes
the action of mirror symmetry. In the presence (absence) of
spin-orbit coupling this matrix squares to −1 (1), due to spin
rotation. This means that the eigenvalues of M are ± i (± 1) for
spinor (scalar) Bloch states on the mirror-symmetric planes.

Thus, one can split the occupied subspace Hset on the
mirror-symmetric planes into two subspaces, according to their
mirror eigenvalue. For example, with spin orbit accounted
the two projectors P̂± i split Hset into H± i consisting of
Bloch states with M eigenvalues ± i correspondingly. The
individual Chern numbers C± i are then defined for each of
these subspaces. Note that the splitting according to the mirror
eigenvalue fixes the individual Chern numbers uniquely, and
each of the subspaces has Z classification. This is different
from the case of TR symmetry considered above, where all
even/odd individual Chern numbers were equivalent from the
point of view of the Z2 classification.

The work of Ref. [49] introduced the mirror Chern number
defined as nM = (C+i − C−i)/2. This number can be used as
a Z topological invariant for the systems with TR symmetry,
where Ci = −C−i (assuming the mirror-symmetric plane is
also TR symmetric). In magnetic systems, however, the two
individual Chern numbers are not necessarily equal, so that
the invariant can be given by two integers (Ci,C−i) and the
corresponding classification is Z × Z.

A TR-symmetric example of a mirror-symmetric crystalline
topological insulator is SnTe, in which the topological phase
is protected by the mirror symmetry of its rocksalt structure
[122,123]. The mirror Chern number was predicted to be nM =
2 for this material [122]. The individual Chern numbers C+i

and C−i are defined on a mirror-invariant plane (!L1L2) shown
in Fig. 8(a).

The presence of a topological phase can immediately be
inferred by computing HWCCs (running Z2Pack) on the
mirror plane. The result of this calculation is shown in Fig. 8(b).
The absence of a gap in the full HWCCs spectrum, which is
a superposition of the HWCCs of both +i and −i mirror
eigenstates, is indeed a strong indicator for the presence of a
topological phase.

To compute the individual Chern numbers C+i and C−i

with Z2Pack, it is first necessary to classify each Hamiltonian
eigenstate according to the mirror eigenvalues +i or −i.
This is done by computing and diagonalizing at each k the
matrix ⟨ψn(k)|M̂|ψm(k)⟩, where M̂ is the mirror operator,
for all occupied states ψj (k). Using the unitary transfor-
mation U (k) which diagonalizes this matrix, a set of states

FIG. 8. (a) Brillouin zone of SnTe showing the mirror planes
along which the HWCCs are computed. (b) HWCCs in the mirror
plane. (c), (d) HWCCs (circles) and their sum (rhombi) for the i and
−i eigenstates in the mirror plane.

with definite mirror eigenvalues is constructed as |ψ̃m(k)⟩ =∑
m Umn(k)|ψ̃n(k)⟩. These states are then separated into two

groups corresponding to the ± i eigenvalues, and Z2Pack is
applied to each subspace to compute C+i = +2 and C−i = −2
as shown in Figs. 8(c) and 8(d), using the numerical procedure
described in Appendix A.

For this illustration, ab initio calculations based on
density-functional theory (DFT) [124,125] were performed,
employing the generalized-gradient approximation (GGA)
and Perdew-Burke-Ernzerhof exchange-correlation function-
als [117] as implemented in the QUANTUM ESPRESSO
package [126]. Spin-orbit effects were accounted for using
fully relativistic norm-conserving pseudopotentials acting on
valence electron wave functions, represented in the two-
component spinor form [127]. The self-consistent field cal-
culation was performed with a 10 × 10 ×10 k mesh, a plane-
wave cutoff of 50 Ry, and experimental lattice parameters of
Ref. [128].

2. C4 topological insulator

Certain topological phases are protected by rotation point-
group symmetry [15,17– 19,129]. The first model to realize
such a phase was proposed by Fu [15], and it considered
spinless fermions with TR symmetry supplemented with an
additional fourfold rotational symmetry C4. The Z2 classi-
fication proposed in Ref. [15] arises for bands that belong
to two-dimensional representations along the high-symmetry
lines !-Z and A-M of the BZ shown in Fig. 9(a) (the C4 axis
is assumed to coincide with the z direction). For the particular
model of Ref. [15], these bands were obtained by considering
px and py orbitals on a tetragonal crystal lattice with two
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induce a topological classification, however, to date only few
such classifications are known [15– 19]. We expect Z2Pack to
be most useful for identification of materials with yet unknown
topologies, which, in turn, would accelerate the progress
towards full classification of possible crystalline topological
phases and the corresponding low-energy excitations. The two
examples of crystalline topological phases we consider below
are those of the mirror-symmetric and fourfold rotational (C4)
topological insulators.

1. Mirror-symmetric topological phases

The presence of mirror symmetry in the crystal structure of
a material results in the presence of planes in the BZ that are
mirror symmetric. This means that the Bloch states on these
planes are eigenstates of a unitary matrix M that describes
the action of mirror symmetry. In the presence (absence) of
spin-orbit coupling this matrix squares to −1 (1), due to spin
rotation. This means that the eigenvalues of M are ± i (± 1) for
spinor (scalar) Bloch states on the mirror-symmetric planes.

Thus, one can split the occupied subspace Hset on the
mirror-symmetric planes into two subspaces, according to their
mirror eigenvalue. For example, with spin orbit accounted
the two projectors P̂± i split Hset into H± i consisting of
Bloch states with M eigenvalues ± i correspondingly. The
individual Chern numbers C± i are then defined for each of
these subspaces. Note that the splitting according to the mirror
eigenvalue fixes the individual Chern numbers uniquely, and
each of the subspaces has Z classification. This is different
from the case of TR symmetry considered above, where all
even/odd individual Chern numbers were equivalent from the
point of view of the Z2 classification.

The work of Ref. [49] introduced the mirror Chern number
defined as nM = (C+i − C−i)/2. This number can be used as
a Z topological invariant for the systems with TR symmetry,
where Ci = −C−i (assuming the mirror-symmetric plane is
also TR symmetric). In magnetic systems, however, the two
individual Chern numbers are not necessarily equal, so that
the invariant can be given by two integers (Ci,C−i) and the
corresponding classification is Z × Z.

A TR-symmetric example of a mirror-symmetric crystalline
topological insulator is SnTe, in which the topological phase
is protected by the mirror symmetry of its rocksalt structure
[122,123]. The mirror Chern number was predicted to be nM =
2 for this material [122]. The individual Chern numbers C+i

and C−i are defined on a mirror-invariant plane (!L1L2) shown
in Fig. 8(a).

The presence of a topological phase can immediately be
inferred by computing HWCCs (running Z2Pack) on the
mirror plane. The result of this calculation is shown in Fig. 8(b).
The absence of a gap in the full HWCCs spectrum, which is
a superposition of the HWCCs of both +i and −i mirror
eigenstates, is indeed a strong indicator for the presence of a
topological phase.

To compute the individual Chern numbers C+i and C−i

with Z2Pack, it is first necessary to classify each Hamiltonian
eigenstate according to the mirror eigenvalues +i or −i.
This is done by computing and diagonalizing at each k the
matrix ⟨ψn(k)|M̂|ψm(k)⟩, where M̂ is the mirror operator,
for all occupied states ψj (k). Using the unitary transfor-
mation U (k) which diagonalizes this matrix, a set of states

FIG. 8. (a) Brillouin zone of SnTe showing the mirror planes
along which the HWCCs are computed. (b) HWCCs in the mirror
plane. (c), (d) HWCCs (circles) and their sum (rhombi) for the i and
−i eigenstates in the mirror plane.

with definite mirror eigenvalues is constructed as |ψ̃m(k)⟩ =∑
m Umn(k)|ψ̃n(k)⟩. These states are then separated into two

groups corresponding to the ± i eigenvalues, and Z2Pack is
applied to each subspace to compute C+i = +2 and C−i = −2
as shown in Figs. 8(c) and 8(d), using the numerical procedure
described in Appendix A.

For this illustration, ab initio calculations based on
density-functional theory (DFT) [124,125] were performed,
employing the generalized-gradient approximation (GGA)
and Perdew-Burke-Ernzerhof exchange-correlation function-
als [117] as implemented in the QUANTUM ESPRESSO
package [126]. Spin-orbit effects were accounted for using
fully relativistic norm-conserving pseudopotentials acting on
valence electron wave functions, represented in the two-
component spinor form [127]. The self-consistent field cal-
culation was performed with a 10 × 10 ×10 k mesh, a plane-
wave cutoff of 50 Ry, and experimental lattice parameters of
Ref. [128].

2. C4 topological insulator

Certain topological phases are protected by rotation point-
group symmetry [15,17– 19,129]. The first model to realize
such a phase was proposed by Fu [15], and it considered
spinless fermions with TR symmetry supplemented with an
additional fourfold rotational symmetry C4. The Z2 classi-
fication proposed in Ref. [15] arises for bands that belong
to two-dimensional representations along the high-symmetry
lines !-Z and A-M of the BZ shown in Fig. 9(a) (the C4 axis
is assumed to coincide with the z direction). For the particular
model of Ref. [15], these bands were obtained by considering
px and py orbitals on a tetragonal crystal lattice with two
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induce a topological classification, however, to date only few
such classifications are known [15– 19]. We expect Z2Pack to
be most useful for identification of materials with yet unknown
topologies, which, in turn, would accelerate the progress
towards full classification of possible crystalline topological
phases and the corresponding low-energy excitations. The two
examples of crystalline topological phases we consider below
are those of the mirror-symmetric and fourfold rotational (C4)
topological insulators.

1. Mirror-symmetric topological phases

The presence of mirror symmetry in the crystal structure of
a material results in the presence of planes in the BZ that are
mirror symmetric. This means that the Bloch states on these
planes are eigenstates of a unitary matrix M that describes
the action of mirror symmetry. In the presence (absence) of
spin-orbit coupling this matrix squares to −1 (1), due to spin
rotation. This means that the eigenvalues of M are ± i (± 1) for
spinor (scalar) Bloch states on the mirror-symmetric planes.

Thus, one can split the occupied subspace Hset on the
mirror-symmetric planes into two subspaces, according to their
mirror eigenvalue. For example, with spin orbit accounted
the two projectors P̂± i split Hset into H± i consisting of
Bloch states with M eigenvalues ± i correspondingly. The
individual Chern numbers C± i are then defined for each of
these subspaces. Note that the splitting according to the mirror
eigenvalue fixes the individual Chern numbers uniquely, and
each of the subspaces has Z classification. This is different
from the case of TR symmetry considered above, where all
even/odd individual Chern numbers were equivalent from the
point of view of the Z2 classification.

The work of Ref. [49] introduced the mirror Chern number
defined as nM = (C+i − C−i)/2. This number can be used as
a Z topological invariant for the systems with TR symmetry,
where Ci = −C−i (assuming the mirror-symmetric plane is
also TR symmetric). In magnetic systems, however, the two
individual Chern numbers are not necessarily equal, so that
the invariant can be given by two integers (Ci,C−i) and the
corresponding classification is Z × Z.

A TR-symmetric example of a mirror-symmetric crystalline
topological insulator is SnTe, in which the topological phase
is protected by the mirror symmetry of its rocksalt structure
[122,123]. The mirror Chern number was predicted to be nM =
2 for this material [122]. The individual Chern numbers C+i

and C−i are defined on a mirror-invariant plane (!L1L2) shown
in Fig. 8(a).

The presence of a topological phase can immediately be
inferred by computing HWCCs (running Z2Pack) on the
mirror plane. The result of this calculation is shown in Fig. 8(b).
The absence of a gap in the full HWCCs spectrum, which is
a superposition of the HWCCs of both +i and −i mirror
eigenstates, is indeed a strong indicator for the presence of a
topological phase.

To compute the individual Chern numbers C+i and C−i

with Z2Pack, it is first necessary to classify each Hamiltonian
eigenstate according to the mirror eigenvalues +i or −i.
This is done by computing and diagonalizing at each k the
matrix ⟨ψn(k)|M̂|ψm(k)⟩, where M̂ is the mirror operator,
for all occupied states ψj (k). Using the unitary transfor-
mation U (k) which diagonalizes this matrix, a set of states

FIG. 8. (a) Brillouin zone of SnTe showing the mirror planes
along which the HWCCs are computed. (b) HWCCs in the mirror
plane. (c), (d) HWCCs (circles) and their sum (rhombi) for the i and
−i eigenstates in the mirror plane.

with definite mirror eigenvalues is constructed as |ψ̃m(k)⟩ =∑
m Umn(k)|ψ̃n(k)⟩. These states are then separated into two

groups corresponding to the ± i eigenvalues, and Z2Pack is
applied to each subspace to compute C+i = +2 and C−i = −2
as shown in Figs. 8(c) and 8(d), using the numerical procedure
described in Appendix A.

For this illustration, ab initio calculations based on
density-functional theory (DFT) [124,125] were performed,
employing the generalized-gradient approximation (GGA)
and Perdew-Burke-Ernzerhof exchange-correlation function-
als [117] as implemented in the QUANTUM ESPRESSO
package [126]. Spin-orbit effects were accounted for using
fully relativistic norm-conserving pseudopotentials acting on
valence electron wave functions, represented in the two-
component spinor form [127]. The self-consistent field cal-
culation was performed with a 10 × 10 ×10 k mesh, a plane-
wave cutoff of 50 Ry, and experimental lattice parameters of
Ref. [128].

2. C4 topological insulator

Certain topological phases are protected by rotation point-
group symmetry [15,17– 19,129]. The first model to realize
such a phase was proposed by Fu [15], and it considered
spinless fermions with TR symmetry supplemented with an
additional fourfold rotational symmetry C4. The Z2 classi-
fication proposed in Ref. [15] arises for bands that belong
to two-dimensional representations along the high-symmetry
lines !-Z and A-M of the BZ shown in Fig. 9(a) (the C4 axis
is assumed to coincide with the z direction). For the particular
model of Ref. [15], these bands were obtained by considering
px and py orbitals on a tetragonal crystal lattice with two
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induce a topological classification, however, to date only few
such classifications are known [15– 19]. We expect Z2Pack to
be most useful for identification of materials with yet unknown
topologies, which, in turn, would accelerate the progress
towards full classification of possible crystalline topological
phases and the corresponding low-energy excitations. The two
examples of crystalline topological phases we consider below
are those of the mirror-symmetric and fourfold rotational (C4)
topological insulators.

1. Mirror-symmetric topological phases

The presence of mirror symmetry in the crystal structure of
a material results in the presence of planes in the BZ that are
mirror symmetric. This means that the Bloch states on these
planes are eigenstates of a unitary matrix M that describes
the action of mirror symmetry. In the presence (absence) of
spin-orbit coupling this matrix squares to −1 (1), due to spin
rotation. This means that the eigenvalues of M are ± i (± 1) for
spinor (scalar) Bloch states on the mirror-symmetric planes.

Thus, one can split the occupied subspace Hset on the
mirror-symmetric planes into two subspaces, according to their
mirror eigenvalue. For example, with spin orbit accounted
the two projectors P̂± i split Hset into H± i consisting of
Bloch states with M eigenvalues ± i correspondingly. The
individual Chern numbers C± i are then defined for each of
these subspaces. Note that the splitting according to the mirror
eigenvalue fixes the individual Chern numbers uniquely, and
each of the subspaces has Z classification. This is different
from the case of TR symmetry considered above, where all
even/odd individual Chern numbers were equivalent from the
point of view of the Z2 classification.

The work of Ref. [49] introduced the mirror Chern number
defined as nM = (C+i − C−i)/2. This number can be used as
a Z topological invariant for the systems with TR symmetry,
where Ci = −C−i (assuming the mirror-symmetric plane is
also TR symmetric). In magnetic systems, however, the two
individual Chern numbers are not necessarily equal, so that
the invariant can be given by two integers (Ci,C−i) and the
corresponding classification is Z × Z.

A TR-symmetric example of a mirror-symmetric crystalline
topological insulator is SnTe, in which the topological phase
is protected by the mirror symmetry of its rocksalt structure
[122,123]. The mirror Chern number was predicted to be nM =
2 for this material [122]. The individual Chern numbers C+i

and C−i are defined on a mirror-invariant plane (!L1L2) shown
in Fig. 8(a).

The presence of a topological phase can immediately be
inferred by computing HWCCs (running Z2Pack) on the
mirror plane. The result of this calculation is shown in Fig. 8(b).
The absence of a gap in the full HWCCs spectrum, which is
a superposition of the HWCCs of both +i and −i mirror
eigenstates, is indeed a strong indicator for the presence of a
topological phase.

To compute the individual Chern numbers C+i and C−i

with Z2Pack, it is first necessary to classify each Hamiltonian
eigenstate according to the mirror eigenvalues +i or −i.
This is done by computing and diagonalizing at each k the
matrix ⟨ψn(k)|M̂|ψm(k)⟩, where M̂ is the mirror operator,
for all occupied states ψj (k). Using the unitary transfor-
mation U (k) which diagonalizes this matrix, a set of states

FIG. 8. (a) Brillouin zone of SnTe showing the mirror planes
along which the HWCCs are computed. (b) HWCCs in the mirror
plane. (c), (d) HWCCs (circles) and their sum (rhombi) for the i and
−i eigenstates in the mirror plane.

with definite mirror eigenvalues is constructed as |ψ̃m(k)⟩ =∑
m Umn(k)|ψ̃n(k)⟩. These states are then separated into two

groups corresponding to the ± i eigenvalues, and Z2Pack is
applied to each subspace to compute C+i = +2 and C−i = −2
as shown in Figs. 8(c) and 8(d), using the numerical procedure
described in Appendix A.

For this illustration, ab initio calculations based on
density-functional theory (DFT) [124,125] were performed,
employing the generalized-gradient approximation (GGA)
and Perdew-Burke-Ernzerhof exchange-correlation function-
als [117] as implemented in the QUANTUM ESPRESSO
package [126]. Spin-orbit effects were accounted for using
fully relativistic norm-conserving pseudopotentials acting on
valence electron wave functions, represented in the two-
component spinor form [127]. The self-consistent field cal-
culation was performed with a 10 × 10 ×10 k mesh, a plane-
wave cutoff of 50 Ry, and experimental lattice parameters of
Ref. [128].

2. C4 topological insulator

Certain topological phases are protected by rotation point-
group symmetry [15,17– 19,129]. The first model to realize
such a phase was proposed by Fu [15], and it considered
spinless fermions with TR symmetry supplemented with an
additional fourfold rotational symmetry C4. The Z2 classi-
fication proposed in Ref. [15] arises for bands that belong
to two-dimensional representations along the high-symmetry
lines !-Z and A-M of the BZ shown in Fig. 9(a) (the C4 axis
is assumed to coincide with the z direction). For the particular
model of Ref. [15], these bands were obtained by considering
px and py orbitals on a tetragonal crystal lattice with two
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Wannier tight-binding models are effective models constructed from first-principles calculations. As such, they
bridge a gap between the accuracy of first-principles calculations and the computational simplicity of effective
models. In this work, we extend the existing methodology of creating Wannier tight-binding models from first-
principles calculations by introducing the symmetrization post-processing step, which enables the production of
Wannier-like models that respect the symmetries of the considered crystal. Furthermore, we implement automatic
workflows, which allow for producing a large number of tight-binding models for large classes of chemically
and structurally similar compounds or materials subject to external influence such as strain. As a particular
illustration, these workflows are applied to strained III-V semiconductor materials. These results can be used for
further study of topological phase transitions in III-V quantum wells.

DOI: 10.1103/PhysRevMaterials.2.103805

I. INTRODUCTION

A significant part of materials science is devoted to the
problem of finding the electronic structure of a given ma-
terial. As a result, numerous computational techniques have
been developed to study this problem. These techniques can
roughly be classified into two kinds: First-principles methods
solve the problem using the fundamental physical principles
and properties of atoms comprising the material. For weakly-
interacting systems, density functional theory (DFT) [1] is
the dominant (mean field) technique for solving the electronic
structure problem from first principles.

In contrast, empirical methods aim to capture the relevant
physical properties using a simplified model. Such models are
usually matched to known properties of the material, which
can be obtained from either experiments or first-principles
calculations. An example of such an empirical method is
given by the tight-binding approximation, which describes a
material as a set of localized orbitals and predefined electron
hopping terms between them. While the first-principles meth-
ods typically have superior accuracy, empirical methods are
often used due to their lower computational cost. In particular,
calculations of complex device geometries are often inaccessi-
ble to a direct first-principles study. As such, the construction
of reliable empirical models is of significant importance, and

*The work was carried out at Theoretical Physics, ETH Zurich,
8093 Zurich, Switzerland.

the technique of creating Wannier tight-binding models [2,3]
from first-principles calculations is arguably one of the most
popular tools in modern computational materials science. The
use of Wannier tight-binding models allows one to combine
the simplicity of empirical methods with the correct wave
function properties obtained from first principles.

In recent years, high-throughput techniques made a pro-
found impact in various fields of materials science [4– 7].
While the domain eludes a strict definition, a common feature
of such techniques is that computational tools are applied to
a wide range of candidate materials, or variations of a given
material, in search of some beneficial property. Existing codes
and techniques are combined and applied on a scale that
was not previously possible. A range of automated frame-
works [8,9] support this by facilitating the combination of
separate calculations into logical workflows. The challenge
in designing such a high-throughput workflow is to make it
resilient to varying input parameters. Since the number of
calculations performed is too large to be human controlled,
many decisions—for example which calculation to perform
based on the output of a previous calculation—need to be
encoded into the automated workflow.

In this paper, we introduce steps for addressing two stan-
dardly known problems of using Wannier90 [10,11] in com-
bination with any ab initio software to construct tight-binding
models: the absence of symmetries present in the original
compound in the obtained tight-binding model and the ne-
cessity to search for optimal inner and outer energy windows
for projection of the first-principles energy bands. We do not,

2475-9953/2018/2(10)/103805(15) 103805-1 ©2018 American Physical Society
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Figure 1.1: Possible band structures for a 1D system with two electrons per cell
(lattice constant is taken to be a unit of length). Five lowest energy bands are
plotted. (a) Metallic system. No energy gap. (b) Insulating system. The energy
gap separates two occupied bands.

A huge amount of information about the system in question can be obtained

from the band structure alone. For example, consider a 1D periodic system with

two electrons per unit cell. Neglecting spin, one needs two bands to accommodate

two spinless electrons. Possible band structures are illustrated in Fig. 1.1. In the

band structure shown in panel (a) there are no two bands that can be completely

separated from the rest. The two electrons can move freely from one band to

another. Hence, we conclude that this system is metallic – an infinitesimal amount

of energy is enough to drive the system away from its ground state. Quite the

contrary, in the band structure of panel (b) the two lower bands (valence bands)

are clearly separated from the the rest (conduction bands) by the forbidden energy

region – an energy gap between the bottom of the conduction band and the top

of the valence band. In the ground state the two lowest bands are occupied and

the system is insulating, meaning that a finite amount (Eg) of energy is needed to

excite an electron. Thus, we see that a mere glimpse at the band structure allows

one to make predictions about the conducting properties of a given material and

its possible response to external perturbations.

However, energy bands are not the only useful output of band theory. The

geometric phases of the single-particle wavefunctions also turned out to be a very
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Figure 2.3: BZ in 2D is a torus.

correspond to the same physical state, and thus can differ only by a phase factor.

Taking on the view of a BZ as a closed manifold, we fix this arbitrary phase factor

to be unity, so that

ψnk(r) = ⟨r|ψnk⟩ = ψn,k+G(r). (2.28)

In terms of cell-periodic Bloch functions unk this condition reads

|un,k+G⟩ = e−iG·r|unk⟩. (2.29)

Thus, the u-functions are periodic in real space, but not in reciprocal space, while

for ψ-functions the reverse is true.

In what follows we deal with unk rather than ψnk, since they are better be-

haved. In particular, the derivatives d
dk |unk⟩ are well-behaved and belong to the

same Hilbert space as |unk⟩. This is not the case for |ψnk⟩, since

d

dk
ψnk(r) =

d

dk

(

eikrunk(r)
)

= eikr
d

dk
unk(r) + ireikrunk(r)

and the second term obviously blows up at large r, since for ψnk(r) the real-space

argument spans the whole space.

There is one seeming drawback of the u-functions, namely that unlike the

ψ-functions they are not eigenfunctions of the Hamiltonian. However, this issue

Z2
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Figure 3.4: Band structure for a hypothetical semi-infinite sample of the quantum
spin Hall insulator. Shadowed regions correspond to the continuum of bulk states.

Haldane model.

Note that in principle, it does not make sense to talk about Chern numbers

of separate bands in the presence of degeneracy. However, in this case the spin

quantum number allows us to distinguish two bands, and define a Chern number

for each of them, using the formula (3.18) with F computed separately for spin

up and spin down states. The Hall conductivity is odd under T , so that the

total Chern number of all the occupied bands in a T -symmetric insulator has to

be zero. Therefore, the Chern number of the spin-up state is minus that of the

spin-down state

C↑ = −C↓. (3.30)

It is interesting to look at what happens at the edge of such a system. In the

Sec. 3.3 it was argued that a semi-infinite sample of a Chern insulator is character-

ized by the presence of current-carrying edge states. For the T -symmetric sinfull

case, the typical spectrum of the semi-infinite model is shown in Fig. 3.4. There

are two edge states that have opposite spins and propagate in different directions,

as a consequence of Eq. (3.30). This means that there is no charge transport along
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Figure 5: Panel (a): schematic illustration of the integration paths used to calculate topological
charges of Weyl points. Panel (b): motion of the center of charge around the sphere is shown
schematically for `1 in panel (a) of Fig. 3 of the main text. The Chern number of the enclosed Weyl
point is equal to �1.

k-dependent chemical potential, located in between the N -th and N +1-th bands at each k-point on
the surface.

Following this prescription and using a Wannier function-based tight-binding model [7, 8] de-
scribed below, Bloch states were calculated on the spheres around the gapless points. The Hamil-
tonian remained gapped in the above sense (N = 72) everywhere on these spheres, schematically
illustrated as `1,2 in Fig. 3(a) of the main text. The corresponding flux of Berry curvature was com-
puted by discretizing a closed sphere, parametrized by angles ✓ and �, into 1D-loops, as shown in
Fig. 5(a). When traversed around a loop, the occupied Bloch states accumulate a Berry phase, the
trace of which is computed for each of these loops ✓i using the methods of Refs. [9, 10, 11].

These Berry phases correspond to the average position of charge [12], associated with the bands
below the gap, on the loop, h'i(✓i). Since 1D loops cover a closed surface, the center of charge h'i
can only shift by an integer multiple of 2⇡ when ✓ varies from 0 to ⇡. This multiple is equal to
the monopole charge enclosed and gives the chirality of the WP enclosed. Similar considerations
are used when computing Chern numbers of insulators, with the only difference that the BZ in that
case is a torus, rather than a sphere. The result of such a calculation is equivalent to taking the
surface integral of the Berry curvature over a closed surface. A more detailed account of this type of
calculations, along with the rigorous derivation can be found in Ref. [13].

The results obtained for WTe2 is shown in Fig. 5(b) for the sphere `1 of Fig. 3(a) of the main
text. The charge center shifts downwards, corresponding to Chern number C = �1, thus proving
the existance of a WP of negative chirality inside `1. For the sphere `2, enclosing the second Weyl
point, the Chern number is C = +1, and hence the chirality of this point is positive.

5 Tight-binding models
To compute chiralities of Weyl points, as well as to interpolate between no SOC and full SOC

states, tight-binding models were derived with and without SOC. These tight-binding models were
obtained using Wannier interpolation [7, 8]. Bloch states were projected onto all W d-states and all
Te p-states. We used a specially symmetrized model without SOC that has the same Weyl points
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The Dirac equation of quantum field theory8

gives rise to massless Weyl fermions that respect9

Lorentz invariance. In condensed matter these10

fermions are realized as low energy excitations11

in Weyl semimetals. In these materials a topo-12

logically protected linear crossing of two bands,13

called a Weyl point, occurs at the Fermi level re-14

sulting in a point-like Fermi surface. Lorentz in-15

variance, however, can be violated in condensed16

matter, and here we generalize the Dirac equa-17

tion accordingly to obtain a fundamentally new18

kind of Weyl fermions. In particular, we report19

on a novel type of Weyl semimetal, with a new20

type of Weyl point that emerges at the boundary21

between electron and hole pockets. This node,22

although still a protected crossing, has an open,23

not point-like, Fermi surface, suggesting physical24

properties very different from that of standard25

Weyl points. We show that an established ma-26

terial, WTe2, is an example of this novel type of27

topological semimetals.28

The recent intense search for topological states of mat-29

ter has mostly focused on theoretically predicting and30

experimentally discovering new classes of topological in-31

sulators. However, topologically interesting behavior oc-32

curs not only in insulators – metallic band structures also33

exhibit non-trivial topological features [1]. Of these met-34

als, the ones with vanishingly small density of states at35

the Fermi level, called semimetals (SM), stand out. For36

these materials, a distinction between topologically pro-37

tected surface and bulk metallic states can still be made,38

and their Fermi surfaces (FS) allow for a topological char-39

acterization.40

Two kinds of TSM with the simplest possible FS have41

attracted special attention: Dirac [2–8] and Weyl SMs [9–42

20]. In these materials a linear crossing of two (Weyl) or43

four (Dirac) bands occurs at the Fermi level, as shown44

in the left panel of Fig. 1. The corresponding effective45

Hamiltonian for these crossings is given by the Weyl or46

Dirac equation respectively. In the following we limit the47

discussion to Weyl crossings only, although our results48

hold for Dirac crossings as well.49

The appearance of Weyl points (WPs) is only possible50

in a material if the product of parity and time-reversal51

(TR) is not a symmetry of the structure. When present,52

a WP acts as a topological charge, being either a source53
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Figure 1. Possible types of Weyl semimetals. Left panel:
Type I Weyl point with point-like Fermi surface. Right panel:
Type II Weyl point is the touching point between electron and
hole pockets.

or a sink of Berry curvature. Thus, a FS enclosing a54

WP has a well-defined Chern number, corresponding to55

this point’s topological charge. Since the net charge has56

to vanish in the entire Brillouin zone (BZ), WPs always57

come in pairs; WPs are stable to weak perturbations and58

can only be annihilated in pairs of opposite charge. A59

large number of unusual physical phenomena are asso-60

ciated with Weyl TSM, including the existence of open61

Fermi arcs in the surface FS [9, 21, 22], and different62

anomalies in magnetotransport [23–30].63

Weyl SMs with broken TR symmetry have been pre-64

dicted to exist in several materials [9–12], but experi-65

mental verification has so far been lacking. Scenarios of66

realizing this phase without breaking TR [31] that re-67

quired either alloying or application of external pressure68

were also proposed [13–15]. More recently, the Weyl SM69

was predicted to exist in single crystal nonmagnetic ma-70

terials of the TaAs class [16, 17], and this prediction was71

soon verified experimentally [18, 19].72

Up to now, Weyl SMs have been thought to have a73

point-like FS at the WP. We refer to these as type-I74

WPs (WP1), to contrast them with the new type-II WPs75

(WP2) that exist at the boundary of electron and hole7677

pockets, as illustrated in the right panel of Fig. 1. We dis-78

cuss general conditions for WP2s to appear, and present79

evidence that WTe2 is an example of the the new type80

of TSM hosting eight WP2s. They come in two quar-81

tets located 0.052 eV and 0.058 eV above the Fermi level.82

Topological arguments will be given to prove the exis-83

Berry curvature of 
these bands is used
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Figure 1. Possible types of Weyl semimetals. Left panel:
Type I Weyl point with point-like Fermi surface. Right panel:
Type II Weyl point is the touching point between electron and
hole pockets.

or a sink of Berry curvature. Thus, a FS enclosing a54

WP has a well-defined Chern number, corresponding to55

this point’s topological charge. Since the net charge has56

to vanish in the entire Brillouin zone (BZ), WPs always57

come in pairs; WPs are stable to weak perturbations and58

can only be annihilated in pairs of opposite charge. A59

large number of unusual physical phenomena are asso-60

ciated with Weyl TSM, including the existence of open61

Fermi arcs in the surface FS [2, 8], and different anoma-62

lies in magnetotransport [9–15].63

Weyl SMs with broken TR symmetry have been pre-64

dicted to exist in several materials [2, 16, 17], but exper-65

imental verification has so far been lacking. Scenarios of66

realizing this phase without breaking TR that required67

either alloying or application of external pressure were68

also proposed [18, 19]. More recently, the Weyl SM was69

predicted to exist in single crystal nonmagnetic materi-70

als of the TaAs class [4, 5], and this prediction was soon71

verified experimentally [6, 7].72

Up to now, Weyl SMs have been thought to have a73

point-like FS at the WP. We refer to these as type-74

I WPs (WP1), to contrast them with the new type-II75

WPs (WP2) that exist at the boundary of electron and7677

hole pockets, as illustrated in the right panel of Fig. 1.78

We discuss general conditions for WP2s to appear, and79

present evidence that WTe2, a material that was recently80

reported [20] to have the largest known to date never-81

saturating magnetoresistance, is an example of the the82

new type of TSM hosting eight WP2s. They come in83
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We thus conclude that the presence of topological nodal
points, comprised of several overlapping Weyl points, like
Dirac point, can be revealed by the flow of Wannier charge
centers, provided one tracks the expectation values of the
symmetry that protects the Weyl points from annihilating
for the corresponding eigenstates of the non-Abelian Berry
connection (Wilson loop) to make sure that they are distinct
at the crossing point in the WCC spectrum. In this case, the
WCC spectrum is gapless and the topological phase is proven.

VI. NUMERICAL IMPLEMENTATION

Here, we outline the numerical implementation of the
methodology described in the previous sections. The method
of calculating (individual) Chern numbers and Z2 invariants
on different manifolds in the BZ is implemented in the
Z2Pack code package, which is an open-source Python [154]
module. The code and documentation, including tutorials and
examples, are available in the Supplemental Material to this
paper [155].

One-dimensional maximally localized hybrid Wannier
charge centers are computed directly from the overlap matrices
as defined in Appendix C 2. The Chern andZ2 invariants can be
automatically extracted from the WCC, by using the methods
described in Appendixes A and B. The numerical calculations
are performed with help of the NUMPY [156] and SCIPY
[157] packages.

FIG. 17. (a) WCC evolution on a sphere of radius r = 0.001 Å
−1

enclosing one of the two Dirac points in Cd3As2 with n1 = n2 = 0.
The WCC are colored according to the C4 expectation values of the
corresponding Wilson loop eigenstates. The expectation values are
mapped on the complex plane in panel (b). (c), (d) WCC evolution
and C4 expectation values on the same sphere around one of the Dirac
points, for n1 = n2 = 106 eVÅ

3
.

Z2Pack is compatible with any method or software, which
can provide the overlap matrices or eigenstates for a given
path of k points. Tools for computing the overlap matrices for
tight-binding and k · p models are included in the module. For
first-principles computations, an interface to the WANNIER90
[130,131] code is provided, and the overlap matrices are com-
puted by the first-principles codes that support WANNIER90,
making Z2Pack compatible with any such code. For example,
widely used VASP [116], QUANTUM ESPRESSO [126],
and ABINIT [158,159] codes can be straightforwardly used
with Z2Pack. Appendix H shows the runtime for example
calculations for k · p and tight-binding models, and each of
the first-principles codes.

Furthermore, Z2Pack features a rich set of convergence
criteria to ensure the correct evaluation of the topological
indices. This is especially important because of the quantized
nature of the topological invariants, making it impossible to
approximate their value iteratively. In all but the most delicate
cases,9 Z2Pack will converge automatically using only the
provided default parameters. This makes the code ideally
suited for high-throughput applications by minimizing the
need for manual intervention.

Finally, Z2Pack provides methods for plotting the results.
Figures showing the WCC and their largest gap (such as in
Fig. 7), the sum of WCC (see Fig. 15), and the WCC colored
according to a symmetry expectation value (see Fig. 17)
can be produced. The plotting functions are based on the
MATPLOTLIB [160] package, and their appearance can be
fully customized.

VII. CONCLUSIONS

We introduced and enumerated the known approaches to
identifying topological states in both insulators and semimetals
and provided an easy-to-use package for the evaluation of
topological invariants such as Chern numbers, Z2 invariants,
mirror Chern numbers, and semimetal monopole charges. The
approach is based on the calculation of hybrid WCCs from the
overlap matrices constructed with Bloch states. We showed
how the method can be used to classify part of the known
symmetry-protected topological states of noninteracting sys-
tems, based on the notion of individual Chern numbers. The
proposed scheme is suited for high-throughput search for
materials with nontrivial topology and can point to materials
that have yet undiscovered nontrivial topologies.

We also presented a numerical implementation of the
method in the Z2Pack software package. Examples were
provided for materials with various topologies. For insulators,
the Chern and Z2 topological phases were illustrated, as
well as some crystalline TIs. For semimetals, we illustrated
approaches for classifying and identifying topological nodal
points. Generalizations to nodal lines are straightforward.

9If the direct band gap becomes very small, the WCC tend to move
very quickly. It is then necessary to use a more stringent convergence
criteria. However, it is still possible to achieve automatic convergence
with Z2Pack.
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sulators. However, topologically interesting behavior oc-32

curs not only in insulators – metallic band structures also33

exhibit non-trivial topological features [3]. Of these met-34

als, the ones with vanishingly small density of states at35

the Fermi level, called semimetals (SM), stand out. For36

these materials, a distinction between topologically pro-37

tected surface and bulk metallic states can still be made,38

and their Fermi surfaces (FS) allow for a topological char-39

acterization.40

Two kinds of TSM with the simplest possible FS have41

attracted special attention: Dirac and Weyl SMs. In42

these materials a linear crossing of two (Weyl) or four43

(Dirac) bands occurs at the Fermi level, as shown in the44

left panel of Fig. 1. The corresponding effective Hamil-45

tonian for these crossings is given by the Weyl or Dirac46

equation respectively. In the following we limit the dis-47

cussion to Weyl crossings only, although our results hold48

for Dirac crossings as well.49

The appearance of Weyl points (WPs) is only possible50

in a material if the product of parity and time-reversal51

(TR) is not a symmetry of the structure. When present,52

a WP acts as a topological charge, being either a source53

E E

kx kx

ky ky

Figure 1. Possible types of Weyl semimetals. Left panel:
Type I Weyl point with point-like Fermi surface. Right panel:
Type II Weyl point is the touching point between electron and
hole pockets.

or a sink of Berry curvature. Thus, a FS enclosing a54

WP has a well-defined Chern number, corresponding to55

this point’s topological charge. Since the net charge has56

to vanish in the entire Brillouin zone (BZ), WPs always57

come in pairs; WPs are stable to weak perturbations and58

can only be annihilated in pairs of opposite charge. A59

large number of unusual physical phenomena are asso-60

ciated with Weyl TSM, including the existence of open61

Fermi arcs in the surface FS [2, 8], and different anoma-62

lies in magnetotransport [9–15].63

Weyl SMs with broken TR symmetry have been pre-64

dicted to exist in several materials [2, 16, 17], but exper-65

imental verification has so far been lacking. Scenarios of66

realizing this phase without breaking TR that required67

either alloying or application of external pressure were68

also proposed [18, 19]. More recently, the Weyl SM was69

predicted to exist in single crystal nonmagnetic materi-70

als of the TaAs class [4, 5], and this prediction was soon71

verified experimentally [6, 7].72

Up to now, Weyl SMs have been thought to have a73

point-like FS at the WP. We refer to these as type-74

I WPs (WP1), to contrast them with the new type-II75

WPs (WP2) that exist at the boundary of electron and7677

hole pockets, as illustrated in the right panel of Fig. 1.78

We discuss general conditions for WP2s to appear, and79

present evidence that WTe2, a material that was recently80

reported [20] to have the largest known to date never-81

saturating magnetoresistance, is an example of the the82

new type of TSM hosting eight WP2s. They come in83

four-fold degeneracy
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Cd3As2

capability to prepare high-quality and high-mobility samples has
enabled the experimental observations of many interesting
phenomena that arises from its 2D Dirac fermions. The large
Fermi velocity and high mobility in Cd3As2 are among the
important experimental criteria to explore the 3D relativistic
physics in various Hall phenomena in tailored Cd3As2.

We compare ARPES observations with our theoretical calcula-
tions, which is qualitatively consistent with previous calculations14.
The reason for the use of our calculations is twofold: first, our
calculations are fine tuned based on the characterization of samples
used in the present ARPES study; second, sufficiently detailed cuts
are not readily available from ref. 14, which is necessary for a
detailed comparison of ARPES data with theory. In theory, there
are two 3D Dirac nodes that are expected at two special k points
along the G!Z momentum space cut-direction, as shown by the
red crossings in Fig. 1d. At the (001) surface, these two k points
along the G!Z axis project on to the !G point of the (001) surface
BZ (Fig. 1d). Therefore, at the (001) surface, theory predicts one
3D Dirac cone at the BZ centre !G point, as shown in Fig. 2a. These
results are in qualitative agreement with our data, which supports
our experimental observation of the 3D BDS phase in Cd3As2. We
also study the ARPES measured constant energy contour maps
(Fig. 2c and d). At the Fermi level, the constant energy contour
consists of a single pocket centred at the !G point. With increasing
binding energy, the size of the pocket decreases and eventually
shrinks to a point (the 3D Dirac point) near EB ’ 0:2 eV. The
observed anisotropies in the iso-energetic contours are likely due to

matrix element effects associated with the standard p-polarization
geometry used in our measurements.

3D dispersive nature. A 3D Dirac semimetal is expected to
feature nearly linear dispersion along all three momentum space
directions close to the crossing point, even though the Fermi/
Dirac velocity can vary significantly along different directions.
It is well known that in real materials, such as pure Bi, graphene
or TIs, the Dirac cones are never perfectly linear over a large
energy window yet they can be approximated to be so within a
narrow energy window and in comparison to the large effective
mass of conventional band electrons in many other materials.
In order to probe the 3D nature of the observed low-energy
Dirac-like bands in Cd3As2, we performed ARPES measurements
as a function of incident photon energy to study the out-of-plane
dispersion perpendicular to the (001) surface. Upon varying the
photon energy, one can effectively probe the electronic structure
at different out-of-plane momentum kz values in a 3D BZ and
compare with band calculations. In Cd3As2, the electronic
structure or band dispersions in the vicinity of its 3D Dirac-like
node can be approximated as: v2

kðk2
x þ k2

yÞ þ v2
?ðkz ! k0Þ2 ¼ E2,

where k0 is the out-of-plane momentum value of the 3D Dirac
point. Thus, at a fixed kz value (which is determined by the
incident photon energy value), the in-plane electronic dispersion
takes the form: v2

kðk
2
x þ k2

yÞ ¼ E2! v2
?ðkz ! k0Þ2. It can be seen

that only at kz ¼ k0 the in-plane dispersion is a gapless Dirac cone,
whereas in the case for kzak0 the nonzero kz! k0 term acts as an
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Figure 1 | Brillouin zone symmetry and 3D Dirac cone. (a) Cd3As2 crystalizes in a tetragonal body centre structure with space group of I41cd, which has
32 number of formula units in the unit cell. The tetragonal structure has lattice constant of a ¼ 12.670 Å, b ¼ 12.670 Å and c ¼ 25.480 Å. (b) The basic
structure unit is a four corner-sharing CdAs3-trigonal pyramid. (c) Core-level spectroscopic measurement where Cd 4d and As 3d peaks are clearly
observed. Inset shows a picture of the Cd3As2 samples used for angle-resolved photoemission spectroscopy (ARPES) measurements. The flat and mirror-
like surface indicate the high quality of our samples. (d) The bulk BZ and the projected surface BZ along the (001) direction. The red crossings locate at
(kx, ky, kz) ¼ (0, 0, 0.15(2p)/(c*)) (c* ¼ c/a). They denote the two special k points along the G! Z momentum space cut-direction, where 3D Dirac band-
touchings are protected by the crystalline C4 symmetry along the kz axis. (e) Second derivative image of ARPES dispersion map of Cd3As2 over the wider
binding energy range. Various bands are well-resolved up to 3 eV binding energy range. (f) ARPES EB! kx cut of Cd3As2 near the Fermi level at around

surface BZ centre !G point.
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A framework to identify topological phases in materials

allows one to

1. Automatically identify material candidates for 
topological insulator/semimetal phases

2. Do a high-throughput search and classification 
of topologies in existing materials

3. Identify novel topological phases in weakly 
correlated materials

Z2Pack works with first-principles, tight-binding and k.p models
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The intense theoretical and experimental interest in topological insulators and semimetals has established band
structure topology as a fundamental material property. Consequently, identifying band topologies has become
an important, but often challenging, problem, with no exhaustive solution at the present time. In this work we
compile a series of techniques, some previously known, that allow for a solution to this problem for a large set
of the possible band topologies. The method is based on tracking hybrid Wannier charge centers computed for
relevant Bloch states, and it works at all levels of materials modeling: continuous k · p models, tight-binding
models, and ab initio calculations. We apply the method to compute and identify Chern, Z2, and crystalline
topological insulators, as well as topological semimetal phases, using real material examples. Moreover, we
provide a numerical implementation of this technique (the Z2Pack software package) that is ideally suited for
high-throughput screening of materials databases for compounds with nontrivial topologies. We expect that our
work will allow researchers to (a) identify topological materials optimal for experimental probes, (b) classify
existing compounds, and (c) reveal materials that host novel, not yet described, topological states.
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I. INTRODUCTION

Topology studies the properties of geometric objects that
are preserved under smooth deformations, and divides these
objects accordingly into distinct topological classes. In the
past decade the principles of topology were applied to crys-
talline solids, where electronic bands can have a topological
characterization [1– 4]. For example, in band insulators the
occupied bands are separated from the unoccupied ones by
an energy gap, and form a well-defined manifold in Hilbert
space. Certain geometric properties can be defined for this
manifold, giving rise to a topological classification of band
insulators [5– 7] and to the notion of topological insulators
[2,3]. The physical equivalent of the mathematical notion of
smoothly connectable manifolds in this case is the possibility
to adiabatically transform one gapped manifold into another.
This means that if two gapped Hamiltonians belong to the
same topological class, they can be adiabatically connected
without a direct closure of the band gap.

The topological classification of insulators can be en-
riched by an additional symmetry constraint on the classified
Hamiltonians. In this case, two systems are considered to
be topologically equivalent if their Hamiltonians can be
adiabatically connected by a path along which the band gap
remains open and the symmetry is preserved. Time-reversal-
(TR-) symmetric [1,8– 12], antiferromagnetic [13,14], and
crystalline topological insulators [15– 19] are examples of
these symmetry-enriched topological classifications.

Unlike other observables, quantum numbers describing
the topology of a state do not necessarily correspond to
eigenvalues of some Hermitian operator. Instead, a different
type of quantum numbers, topological invariants, has to be

defined in such a way that a distinct number is assigned to each
class. The task of identifying topological states then reduces to
defining sensible topological invariants that discern different
classes. Finding ways to compute these invariants becomes
of major importance in the field. A final predictive theory of
all topological invariants for all existing topological classes is
missing and, due to the multitude of symmetry space groups
and possible orbitals at the Fermi level, seems to be out of
reach at the present time.

The ability to distinguish distinct topological classes is not
only of theoretical interest, but also allows for the prediction
of physical phenomena in real materials. For example, in two
dimensions generic insulators with no symmetries apart from
the fundamental charge conservation are classified according
to the value of the (first) Chern number C [20]. This is a
unique characteristic of the occupied manifold. Insulators with
C ̸= 0, called Chern insulators, realize the integer quantum
Hall effect in the absence of an external magnetic field [21,22],
and their Hall conductance is related to the Chern number as
σxy = Ce2/h [23,24], where e is the electron charge and h is
the Planck constant.

The invariants of symmetry-protected band topologies are
usually more complex, giving rise to a variety of physical phe-
nomena such as the existence of topologically protected sur-
face states [2,3], quantized magnetoelectric response [25,26],
the quantum spin Hall effect [1,8,27,28], and non-Abelian
quasiparticles for topological quantum computing [29– 34] in
topological superconductors and superfluids [4].

Metals also allow for a topological characterization [4]. For
indirect band-gap semimetals, where the lower-lying bands are
gapped from the rest at each momentum in the Brillouin zone
(BZ), the topology of the lower-lying states is defined in a

2469-9950/2017/95(7)/075146(24) 075146-1 ©2017 American Physical Society

http://z2pack.ethz.ch

